Skip to main content

Advertisement

Log in

Association of the germline TP53 R72P and MDM2 SNP309 variants with breast cancer survival in specific breast tumor subgroups

  • Epidemiology
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

The tumor suppressor gene TP53 and its regulator MDM2 are both important players in the DNA-damage repair “TP53 response pathway”. Common germline polymorphisms in these genes may affect outcome in patients with tumors characterized by additional somatic changes in the same or a related pathway. To evaluate this hypothesis, we determined the effect of the common germline TP53 R72P and MDM2 SNP309 polymorphisms on breast cancer survival in a consecutive cohort of breast cancer patients (age at diagnosis <53 years, n = 295) with gene expression data available. Patients were classified in subgroups according to their tumor TP53 mutation status and three gene expression profiles; a TP53 mutation status expression signature, a PTEN/PI3K pathway signature and the 70-gene prognosis profile. Survival analyses were performed using Cox regression models adjusting for clinico-pathological characteristics and treatment. An increase in breast cancer-specific mortality was observed for carriers of the germline MDM2 SNP309 rare GG-genotype (range hazard ratios: 2–3) or TP53 R72P heterozygous GC-genotype (range hazard ratios: 1–2) compared to those having the common genotypes within subgroups of tumors displaying a “more aggressive phenotype” gene expression profile. There was no evidence of such an effect on survival within the TP53-mutated tumor group for TP53 R72P carriers but a suggestion of an effect for MDM2 SNP309 carriers (GG vs. TT-genotype HR 2.99, P = 0.06). These results indicate that common polymorphisms in specific pathways may add to the worse prognosis of patients with tumors in which these pathways are affected by somatic alterations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jin S, Levine AJ (2001) The p53 functional circuit. J Cell Sci 114:4139–4140

    PubMed  CAS  Google Scholar 

  2. Zhou BB, Elledge SJ (2000) The DNA damage response: putting checkpoints in perspective. Nature 408:433–439

    Article  PubMed  CAS  Google Scholar 

  3. Levine AJ (1997) p53, the cellular gatekeeper for growth and division. Cell 88:323–331

    Article  PubMed  CAS  Google Scholar 

  4. Bond GL, Hu W, Levine AJ (2005) MDM2 is a central node in the p53 pathway: 12 years and counting. Curr Cancer Drug Targets 5:3–8

    Article  PubMed  CAS  Google Scholar 

  5. Michael D, Oren M (2003) The p53-Mdm2 module and the ubiquitin system. Semin Cancer Biol 13:49–58

    Article  PubMed  CAS  Google Scholar 

  6. Whibley C, Pharoah PD, Hollstein M (2009) p53 polymorphisms: cancer implications. Nat Rev Cancer 9:95–107

    Article  PubMed  CAS  Google Scholar 

  7. Petitjean A, Achatz MI, Borresen-Dale AL, Hainaut P, Olivier M (2007) TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene 26:2157–2165

    Article  PubMed  CAS  Google Scholar 

  8. Pharoah PD, Day NE, Caldas C (1999) Somatic mutations in the p53 gene and prognosis in breast cancer: a meta-analysis. Br J Cancer 80:1968–1973

    Article  PubMed  CAS  Google Scholar 

  9. Chompret A (2002) The Li-Fraumeni syndrome. Biochimie 84:75–82

    Article  PubMed  CAS  Google Scholar 

  10. Matlashewski GJ, Tuck S, Pim D, Lamb P, Schneider J, Crawford LV (1987) Primary structure polymorphism at amino acid residue 72 of human p53. Mol Cell Biol 7:961–963

    PubMed  CAS  Google Scholar 

  11. Sakamuro D, Sabbatini P, White E, Prendergast GC (1997) The polyproline region of p53 is required to activate apoptosis but not growth arrest. Oncogene 15:887–898

    Article  PubMed  CAS  Google Scholar 

  12. Walker KK, Levine AJ (1996) Identification of a novel p53 functional domain that is necessary for efficient growth suppression. Proc Natl Acad Sci USA 93:15335–15340

    Article  PubMed  CAS  Google Scholar 

  13. Dumont P, Leu JI, Della Pietra AC III, George DL, Murphy M (2003) The codon 72 polymorphic variants of p53 have markedly different apoptotic potential. Nat Genet 33:357–365

    Article  PubMed  CAS  Google Scholar 

  14. Pim D, Banks L (2004) p53 polymorphic variants at codon 72 exert different effects on cell cycle progression. Int J Cancer 108:196–199

    Article  PubMed  CAS  Google Scholar 

  15. Thomas M, Kalita A, Labrecque S, Pim D, Banks L, Matlashewski G (1999) Two polymorphic variants of wild-type p53 differ biochemically and biologically. Mol Cell Biol 19:1092–1100

    PubMed  CAS  Google Scholar 

  16. Tommiska J, Eerola H, Heinonen M, Salonen L, Kaare M, Tallila J, Ristimaki A, von Smitten K, Aittomaki K, Heikkila P et al (2005) Breast cancer patients with p53 Pro72 homozygous genotype have a poorer survival. Clin Cancer Res 11:5098–5103

    Article  PubMed  CAS  Google Scholar 

  17. Schmidt MK, Tommiska J, Broeks A, van Leeuwen FE, van’t Veer LJ, Pharoah PD, Easton DF, Shah M, Humphreys M, Dork T et al (2009) Combined effects of single nucleotide polymorphisms TP53 R72P and MDM2 SNP309, and p53 expression on survival of breast cancer patients. Breast Cancer Res 11:R89

    Article  PubMed  Google Scholar 

  18. Goode EL, Dunning AM, Kuschel B, Healey CS, Day NE, Ponder BA, Easton DF, Pharoah PP (2002) Effect of germ-line genetic variation on breast cancer survival in a population-based study. Cancer Res 62:3052–3057

    PubMed  CAS  Google Scholar 

  19. Vannini I, Zoli W, Tesei A, Rosetti M, Sansone P, Storci G, Passardi A, Massa I, Ricci M, Gusolfino D et al (2008) Role of p53 codon 72 arginine allele in cell survival in vitro and in the clinical outcome of patients with advanced breast cancer. Tumour Biol 29:145–151

    Article  PubMed  CAS  Google Scholar 

  20. Toyama T, Zhang Z, Nishio M, Hamaguchi M, Kondo N, Iwase H, Iwata H, Takahashi S, Yamashita H, Fujii Y (2007) Association of TP53 codon 72 polymorphism and the outcome of adjuvant therapy in breast cancer patients. Breast Cancer Res 9:R34

    Article  PubMed  Google Scholar 

  21. Xu Y, Yao L, Zhao A, Ouyang T, Li J, Wang T, Fan Z, Fan T, Lin B, Lu Y et al (2008) Effect of p53 codon 72 genotype on breast cancer survival depends on p53 gene status. Int J Cancer 122:2761–2766

    Article  PubMed  CAS  Google Scholar 

  22. Martin AM, Kanetsky PA, Amirimani B, Colligon TA, Athanasiadis G, Shih HA, Gerrero MR, Calzone K, Rebbeck TR, Weber BL (2003) Germline TP53 mutations in breast cancer families with multiple primary cancers: is TP53 a modifier of BRCA1? J Med Genet 40:e34

    Article  PubMed  Google Scholar 

  23. Bougeard G, Baert-Desurmont S, Tournier I, Vasseur S, Martin C, Brugieres L, Chompret A, Bressac-de Paillerets B, Stoppa-Lyonnet D, Bonaiti-Pellie C et al (2006) Impact of the MDM2 SNP309 and p53 Arg72Pro polymorphism on age of tumour onset in Li-Fraumeni syndrome. J Med Genet 43:531–533

    Article  PubMed  CAS  Google Scholar 

  24. Schmidt MK, Reincke S, Broeks A, Braaf LM, Hogervorst FB, Tollenaar RA, Johnson N, Fletcher O, Peto J, Tommiska J et al (2007) Do MDM2 SNP309 and TP53 R72P interact in breast cancer susceptibility? A large pooled series from the breast cancer association consortium. Cancer Res 67:9584–9590

    Article  PubMed  CAS  Google Scholar 

  25. Bond GL, Hu W, Bond EE, Robins H, Lutzker SG, Arva NC, Bargonetti J, Bartel F, Taubert H, Wuerl P et al (2004) A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell 119:591–602

    Article  PubMed  CAS  Google Scholar 

  26. Bond GL, Hu W, Levine A (2005) A single nucleotide polymorphism in the MDM2 gene: from a molecular and cellular explanation to clinical effect. Cancer Res 65:5481–5484

    Article  PubMed  CAS  Google Scholar 

  27. Boersma BJ, Howe TM, Goodman JE, Yfantis HG, Lee DH, Chanock SJ, Ambs S (2006) Association of breast cancer outcome with status of p53 and MDM2 SNP309. J Natl Cancer Inst 98:911–919

    Article  PubMed  CAS  Google Scholar 

  28. Nechushtan H, Hamburger T, Mendelson S, Kadouri L, Sharon N, Pikarsky E, Peretz T (2009) Effects of the single nucleotide polymorphism at MDM2 309 on breast cancer patients with/without BRCA1/2 mutations. BMC Cancer 9:60

    Article  PubMed  Google Scholar 

  29. Ruijs MW, Schmidt MK, Nevanlinna H, Tommiska J, Aittomaki K, Pruntel R, Verhoef S, van’t Veer LJ (2007) The single-nucleotide polymorphism 309 in the MDM2 gene contributes to the Li-Fraumeni syndrome and related phenotypes. Eur J Hum Genet 15:110–114

    Article  PubMed  CAS  Google Scholar 

  30. Faur N, Araud L, Laroche-Clary A, Kanno J, Toutain J, Yamori T, Robert J, Le Morvan V (2009) The association between the T309G polymorphism of the MDM2 gene and sensitivity to anticancer drug is dependent on the p53 mutational status in cellular models. Br J Cancer 101:350–356

    Article  PubMed  CAS  Google Scholar 

  31. Takahashi S, Moriya T, Ishida T, Shibata H, Sasano H, Ohuchi N, Ishioka C (2008) Prediction of breast cancer prognosis by gene expression profile of TP53 status. Cancer Sci 99:324–332

    Article  PubMed  CAS  Google Scholar 

  32. Saal LH, Johansson P, Holm K, Gruvberger-Saal SK, She QB, Maurer M, Koujak S, Ferrando AA, Malmstrom P, Memeo L et al (2007) Poor prognosis in carcinoma is associated with a gene expression signature of aberrant PTEN tumor suppressor pathway activity. Proc Natl Acad Sci USA 104:7564–7569

    Article  PubMed  CAS  Google Scholar 

  33. ‘t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536

    Article  PubMed  Google Scholar 

  34. van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AA, Voskuil DW, Schreiber GJ, Peterse JL, Roberts C, Marton MJ et al (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009

    Article  PubMed  Google Scholar 

  35. Mook S, Schmidt MK, Rutgers EJ, van de Velde AO, Visser O, Rutgers SM, Armstrong N, van’t Veer LJ, Ravdin PM (2009) Calibration and discriminatory accuracy of prognosis calculation for breast cancer with the online Adjuvant! program: a hospital-based retrospective cohort study. Lancet Oncol 10:1070–1076

    Article  PubMed  Google Scholar 

  36. Zhou W, Muggerud AA, Vu P, Due EU, Sorlie T, Borresen-Dale AL, Warnberg F, Langerod A (2009) Full sequencing of TP53 identifies identical mutations within in situ and invasive components in breast cancer suggesting clonal evolution. Mol Oncol 3:214–219

    Google Scholar 

  37. Allred DC, Harvey JM, Berardo M, Clark GM (1998) Prognostic and predictive factors in breast cancer by immunohistochemical analysis. Mod Pathol 11:155–168

    PubMed  CAS  Google Scholar 

  38. Harvey JM, Clark GM, Osborne CK, Allred DC (1999) Estrogen receptor status by immunohistochemistry is superior to the ligand-binding assay for predicting response to adjuvant endocrine therapy in breast cancer. J Clin Oncol 17:1474–1481

    PubMed  CAS  Google Scholar 

  39. Olivier M, Langerod A, Carrieri P, Bergh J, Klaar S, Eyfjord J, Theillet C, Rodriguez C, Lidereau R, Bieche I et al (2006) The clinical value of somatic TP53 gene mutations in 1,794 patients with breast cancer. Clin Cancer Res 12:1157–1167

    Article  PubMed  CAS  Google Scholar 

  40. Miller LD, Smeds J, George J, Vega VB, Vergara L, Ploner A, Pawitan Y, Hall P, Klaar S, Liu ET et al (2005) An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. Proc Natl Acad Sci USA 102:13550–13555

    Article  PubMed  CAS  Google Scholar 

  41. Li L, Ross AH (2007) Why is PTEN an important tumor suppressor? J Cell Biochem 102:1368–1374

    Article  PubMed  CAS  Google Scholar 

  42. Cully M, You H, Levine AJ, Mak TW (2006) Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer 6:184–192

    Article  PubMed  CAS  Google Scholar 

  43. Sjogren S, Inganas M, Norberg T, Lindgren A, Nordgren H, Holmberg L, Bergh J (1996) The p53 gene in breast cancer: prognostic value of complementary DNA sequencing versus immunohistochemistry. J Natl Cancer Inst 88:173–182

    Article  PubMed  CAS  Google Scholar 

  44. Norberg T, Lennerstrand J, Inganas M, Bergh J (1998) Comparison between p53 protein measurements using the luminometric immunoassay and immunohistochemistry with detection of p53 gene mutations using cDNA sequencing in human breast tumors. Int J Cancer 79:376–383

    Article  PubMed  CAS  Google Scholar 

  45. Kyndi M, Alsner J, Hansen LL, Sorensen FB, Overgaard J (2006) LOH rather than genotypes of TP53 codon 72 is associated with disease-free survival in primary breast cancer. Acta Oncol 45:602–609

    Article  PubMed  CAS  Google Scholar 

  46. Borresen-Dale AL (2003) TP53 and breast cancer. Hum Mutat 21:292–300

    Article  PubMed  CAS  Google Scholar 

  47. Langerod A, Bukholm IR, Bregard A, Lonning PE, Andersen TI, Rognum TO, Meling GI, Lothe RA, Borresen-Dale AL (2002) The TP53 codon 72 polymorphism may affect the function of TP53 mutations in breast carcinomas but not in colorectal carcinomas. Cancer Epidemiol Biomarkers Prev 11:1684–1688

    PubMed  CAS  Google Scholar 

  48. Early Breast Cancer Trialists’ Collaborative Group (EBCTCG) (2005) Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 365:1687–1717

    Article  Google Scholar 

  49. Cheok CF, Verma CS, Baselga J, Lane DP (2011) Translating p53 into the clinic. Nat Rev Clin Oncol 8:25–37

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank our colleagues at the Netherlands Cancer Institute Flora E. van Leeuwen for discussion of the results in this paper and Petra Kristel for germline DNA isolations. Grant support: Dutch Cancer Society (DCS-NKI 2007-3839; 2009-4363), Dutch Genomics Initiative 2008 ‘Cancer Genomics Centre’, and EU 7th framework Collaborative Oncology Gene-environment study (HEALTH-2007-2.4.1-11).

Conflict of interest

Laura J. van’t Veer is named inventor on a MammaPrint™ patent and reports holding equity in Agendia BV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marjanka K. Schmidt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 141 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

van den Broek, A.J., Broeks, A., Horlings, H.M. et al. Association of the germline TP53 R72P and MDM2 SNP309 variants with breast cancer survival in specific breast tumor subgroups. Breast Cancer Res Treat 130, 599–608 (2011). https://doi.org/10.1007/s10549-011-1615-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-011-1615-y

Keywords

Navigation