Skip to main content

Advertisement

Log in

High-resolution genomic profiling of male breast cancer reveals differences hidden behind the similarities with female breast cancer

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Male breast cancer (MBC) is extremely rare and poorly characterized on the molecular level. Using high-resolution genomic data, we aimed to characterize MBC by genomic imbalances and to compare it with female breast cancer (FBC), and further to investigate whether the genomic profiles hold any prognostic information. Fifty-six fresh frozen MBC tumors were analyzed using high-resolution tiling BAC arrays. Significant regions in common between cases were assessed using Genomic Identification of Significant Targets in Cancer (GISTIC) analysis. A publicly available genomic data set of 359 FBC tumors was used for reference purposes. The data revealed a broad pattern of aberrations, confirming that MBC is a heterogeneous tumor type. Genomic gains were more common in MBC than in FBC and often involved whole chromosome arms, while losses of genomic material were less frequent. The most common aberrations were similar between the genders, but high-level amplifications were more common in FBC. We identified two genomic subgroups among MBCs; male-complex and male-simple. The male-complex subgroup displayed striking similarities with the previously reported luminal-complex FBC subgroup, while the male-simple subgroup seems to represent a new subgroup of breast cancer occurring only in men. There are many similarities between FBC and MBC with respect to genomic imbalances, but there are also distinct differences as revealed by high-resolution genomic profiling. MBC can be divided into two comprehensive genomic subgroups, which may be of prognostic value. The male-simple subgroup appears notably different from any genomic subgroup so far defined in FBC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. NORDCAN: Cancer incidence, mortality, prevalence and prediction in the nordic countries (2009) Association of the Nordic Cancer Registries. Danish Cancer Society. http://www.ancr.nu

  2. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ (2009) Cancer statistics, 2009. CA Cancer J Clin 59(4):225–249. doi:10.3322/caac.20006

    Article  PubMed  Google Scholar 

  3. Stang A, Thomssen C (2008) Decline in breast cancer incidence in the United States: what about male breast cancer? Breast Cancer Res Treat 112(3):595–596. doi:10.1007/s10549-007-9882-3

    Article  PubMed  Google Scholar 

  4. Giordano SH (2005) A review of the diagnosis and management of male breast cancer. Oncologist 10(7):471–479. doi:10.1634/theoncologist.10-7-471

    Article  PubMed  Google Scholar 

  5. Agrawal A, Ayantunde AA, Rampaul R, Robertson JF (2007) Male breast cancer: a review of clinical management. Breast Cancer Res Treat 103(1):11–21. doi:10.1007/s10549-006-9356-z

    Article  PubMed  CAS  Google Scholar 

  6. Korde LA, Zujewski JA, Kamin L, Giordano S, Domchek S, Anderson WF, Bartlett JM, Gelmon K, Nahleh Z, Bergh J, Cutuli B, Pruneri G, McCaskill-Stevens W, Gralow J, Hortobagyi G, Cardoso F (2010) Multidisciplinary meeting on male breast cancer: summary and research recommendations. J Clin Oncol 28(12):2114–2122. doi:10.1200/JCO.2009.25.5729

    Article  PubMed  Google Scholar 

  7. Ciocca V, Bombonati A, Gatalica Z, Di Pasquale M, Milos A, Ruiz-Orrico A, Dreher D, Folch N, Monzon F, Santeusanio G, Perou CM, Bernard PS, Palazzo JP (2006) Cytokeratin profiles of male breast cancers. Histopathology 49(4):365–370. doi:10.1111/j.1365-2559.2006.02519.x

    Article  PubMed  CAS  Google Scholar 

  8. Rudlowski C, Friedrichs N, Faridi A, Fuzesi L, Moll R, Bastert G, Rath W, Buttner R (2004) Her-2/neu gene amplification and protein expression in primary male breast cancer. Breast Cancer Res Treat 84(3):215–223. doi:10.1023/B:BREA.0000019953.92921.7e

    Article  PubMed  CAS  Google Scholar 

  9. Ottini L, Rizzolo P, Zanna I, Falchetti M, Masala G, Ceccarelli K, Vezzosi V, Gulino A, Giannini G, Bianchi S, Sera F, Palli D (2009) BRCA1/BRCA2 mutation status and clinical-pathologic features of 108 male breast cancer cases from Tuscany: a population-based study in central Italy. Breast Cancer Res Treat 116(3):577–586. doi:10.1007/s10549-008-0194-z

    Article  PubMed  Google Scholar 

  10. Ottini L, Palli D, Rizzo S, Federico M, Bazan V, Russo A (2009) Male breast cancer. Crit Rev Oncol Hematol 73(2):141–155. doi:10.1016/j.critrevonc.2009.04.003

    Article  PubMed  Google Scholar 

  11. Brinton LA, Richesson DA, Gierach GL, Lacey JV Jr, Park Y, Hollenbeck AR, Schatzkin A (2008) Prospective evaluation of risk factors for male breast cancer. J Natl Cancer Inst 100(20):1477–1481. doi:10.1093/jnci/djn329

    Article  PubMed  Google Scholar 

  12. Heller KS, Rosen PP, Schottenfeld D, Ashikari R, Kinne DW (1978) Male breast cancer: a clinicopathologic study of 97 cases. Ann Surg 188(1):60–65

    Article  PubMed  CAS  Google Scholar 

  13. Anderson WF, Devesa SS (2005) In situ male breast carcinoma in the Surveillance, Epidemiology, and End Results database of the National Cancer Institute. Cancer 104(8):1733–1741. doi:10.1002/cncr.21353

    Article  PubMed  Google Scholar 

  14. Thalib L, Hall P (2008) Survival of male breast cancer patients: Population-based cohort study. Cancer Sci 100(2):292–295. doi:10.1111/j.1349-7006.2008.01032.x

    Article  Google Scholar 

  15. Giordano SH, Cohen DS, Buzdar AU, Perkins G, Hortobagyi GN (2004) Breast carcinoma in men: a population-based study. Cancer 101(1):51–57. doi:10.1002/cncr.20312

    Article  PubMed  Google Scholar 

  16. Donegan WL, Redlich PN, Lang PJ, Gall MT (1998) Carcinoma of the breast in males: a multiinstitutional survey. Cancer 83(3):498–509

    Article  PubMed  CAS  Google Scholar 

  17. Giordano SH (2008) Male breast cancer: it’s time for evidence instead of extrapolation. Onkologie 31(10):505–506. doi:10.1159/000153894

    Article  PubMed  Google Scholar 

  18. Jonsson G, Staaf J, Vallon-Christersson J, Ringner M, Holm K, Hegardt C, Gunnarsson H, Fagerholm R, Strand C, Agnarsson BA, Kilpivaara O, Luts L, Heikkila P, Aittomaki K, Blomqvist C, Loman N, Malmstrom P, Olsson H, Johannsson OT, Arason A, Nevanlinna H, Barkardottir RB, Borg A (2010) Genomic subtypes of breast cancer identified by array comparative genomic hybridization display distinct molecular and clinical characteristics. Breast Cancer Res 12(3):R42. doi:10.1186/bcr2596

    Article  PubMed  Google Scholar 

  19. Chin K, DeVries S, Fridlyand J, Spellman PT, Roydasgupta R, Kuo WL, Lapuk A, Neve RM, Qian Z, Ryder T, Chen F, Feiler H, Tokuyasu T, Kingsley C, Dairkee S, Meng Z, Chew K, Pinkel D, Jain A, Ljung BM, Esserman L, Albertson DG, Waldman FM, Gray JW (2006) Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell 10(6):529–541. doi:10.1016/j.ccr.2006.10.009

    Article  PubMed  CAS  Google Scholar 

  20. Hu Z, Fan C, Oh DS, Marron JS, He X, Qaqish BF, Livasy C, Carey LA, Reynolds E, Dressler L, Nobel A, Parker J, Ewend MG, Sawyer LR, Wu J, Liu Y, Nanda R, Tretiakova M, Ruiz Orrico A, Dreher D, Palazzo JP, Perreard L, Nelson E, Mone M, Hansen H, Mullins M, Quackenbush JF, Ellis MJ, Olopade OI, Bernard PS, Perou CM (2006) The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics 7:96. doi:10.1186/1471-2164-7-96

    Article  PubMed  Google Scholar 

  21. Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, Deng S, Johnsen H, Pesich R, Geisler S, Demeter J, Perou CM, Lonning PE, Brown PO, Borresen-Dale AL, Botstein D (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 100(14):8418–8423. doi:10.1073/pnas.0932692100

    Article  PubMed  CAS  Google Scholar 

  22. Fridlyand J, Snijders AM, Ylstra B, Li H, Olshen A, Segraves R, Dairkee S, Tokuyasu T, Ljung BM, Jain AN, McLennan J, Ziegler J, Chin K, Devries S, Feiler H, Gray JW, Waldman F, Pinkel D, Albertson DG (2006) Breast tumor copy number aberration phenotypes and genomic instability. BMC Cancer 6:96. doi:10.1186/1471-2407-6-96

    Article  PubMed  Google Scholar 

  23. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO, Botstein D (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752. doi:10.1038/35021093

    Article  PubMed  CAS  Google Scholar 

  24. Horlings HM, Lai C, Nuyten DS, Halfwerk H, Kristel P, van Beers E, Joosse SA, Klijn C, Nederlof PM, Reinders MJ, Wessels LF, van de Vijver MJ (2010) Integration of DNA copy number alterations and prognostic gene expression signatures in breast cancer patients. Clin Cancer Res 16(2):651–663. doi:10.1158/1078-0432.CCR-09-0709

    Article  PubMed  CAS  Google Scholar 

  25. Nielsen TO, Hsu FD, Jensen K, Cheang M, Karaca G, Hu Z, Hernandez-Boussard T, Livasy C, Cowan D, Dressler L, Akslen LA, Ragaz J, Gown AM, Gilks CB, van de Rijn M, Perou CM (2004) Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res 10(16):5367–5374. doi:10.1158/1078-0432.CCR-04-0220

    Article  PubMed  CAS  Google Scholar 

  26. Ge Y, Sneige N, Eltorky MA, Wang Z, Lin E, Gong Y, Guo M (2009) Immunohistochemical characterization of subtypes of male breast carcinoma. Breast Cancer Res 11(3):R28. doi:10.1186/bcr2258

    Article  PubMed  Google Scholar 

  27. Baldetorp B, Bendahl PO, Ferno M, Stal O (2003) Improved DNA flow cytometric, DNA ploidy, and S-phase reproducibility between 15 laboratories in analysis of breast cancer using generalized guidelines. Cytometry A 56(1):1–7. doi:10.1002/cyto.a.10083

    Article  PubMed  Google Scholar 

  28. Chang H (2010) Howard Chang’s lab homepage. http://changlab.stanford.edu/protocols.html. Accessed 20 Oct 2010

  29. Jonsson G, Staaf J, Olsson E, Heidenblad M, Vallon-Christersson J, Osoegawa K, de Jong P, Oredsson S, Ringner M, Hoglund M, Borg A (2007) High-resolution genomic profiles of breast cancer cell lines assessed by tiling BAC array comparative genomic hybridization. Genes Chromosomes Cancer 46(6):543–558. doi:10.1002/gcc.20438

    Article  PubMed  Google Scholar 

  30. Staaf J, Jonsson G, Ringner M, Vallon-Christersson J (2007) Normalization of array-CGH data: influence of copy number imbalances. BMC Genomics 8:382. doi:10.1186/1471-2164-8-382

    Article  PubMed  Google Scholar 

  31. Venkatraman ES, Olshen AB (2007) A faster circular binary segmentation algorithm for the analysis of array CGH data. Bioinformatics 23(6):657–663. doi:10.1093/bioinformatics/btl646

    Article  PubMed  CAS  Google Scholar 

  32. Marchio C, Lambros MB, Gugliotta P, Di Cantogno LV, Botta C, Pasini B, Tan DS, Mackay A, Fenwick K, Tamber N, Bussolati G, Ashworth A, Reis-Filho JS, Sapino A (2009) Does chromosome 17 centromere copy number predict polysomy in breast cancer? A fluorescence in situ hybridization and microarray-based CGH analysis. J Pathol 219(1):16–24. doi:10.1002/path.2574

    Article  PubMed  CAS  Google Scholar 

  33. Beroukhim R, Getz G, Nghiemphu L, Barretina J, Hsueh T, Linhart D, Vivanco I, Lee JC, Huang JH, Alexander S, Du J, Kau T, Thomas RK, Shah K, Soto H, Perner S, Prensner J, Debiasi RM, Demichelis F, Hatton C, Rubin MA, Garraway LA, Nelson SF, Liau L, Mischel PS, Cloughesy TF, Meyerson M, Golub TA, Lander ES, Mellinghoff IK, Sellers WR (2007) Assessing the significance of chromosomal aberrations in cancer: methodology and application to glioma. Proc Natl Acad Sci USA 104(50):20007–20012. doi:10.1073/pnas.0710052104

    Article  PubMed  CAS  Google Scholar 

  34. Staaf J, Jonsson G, Ringner M, Vallon-Christersson J, Grabau D, Arason A, Gunnarsson H, Agnarsson BA, Malmstrom PO, Johannsson OT, Loman N, Barkardottir RB, Borg A (2010) High-resolution genomic and expression analyses of copy number alterations in HER2-amplified breast cancer. Breast Cancer Res 12(3):R25. doi:10.1186/bcr2568

    Article  PubMed  Google Scholar 

  35. The R Project for Statistical Computing. www.r-project.org

  36. Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98(9):5116–5121. doi:10.1073/pnas.091062498

    Article  PubMed  CAS  Google Scholar 

  37. Green AR, Burney C, Granger CJ, Paish EC, El-Sheikh S, Rakha EA, Powe DG, Macmillan RD, Ellis IO, Stylianou E (2008) The prognostic significance of steroid receptor co-regulators in breast cancer: co-repressor NCOR2/SMRT is an independent indicator of poor outcome. Breast Cancer Res Treat 110(3):427–437. doi:10.1007/s10549-007-9737-y

    Article  PubMed  CAS  Google Scholar 

  38. Zhang B, Faller DV, Wang S (2009) HIC1 regulates tumor cell responses to endocrine therapies. Mol Endocrinol 23(12):2075–2085. doi:10.1210/me.2009-0231

    Article  PubMed  CAS  Google Scholar 

  39. Xu J, Lv S, Qin Y, Shu F, Xu Y, Chen J, Xu BE, Sun X, Wu J (2007) TRB3 interacts with CtIP and is overexpressed in certain cancers. Biochim Biophys Acta 1770(2):273–278. doi:10.1016/j.bbagen.2006.09.025

    PubMed  CAS  Google Scholar 

  40. Akisik E, Yazici H, Dalay N (2010) ARLTS1, MDM2 and RAD51 gene variations are associated with familial breast cancer. Mol Biol Rep. doi:10.1007/s11033-010-0113-3

  41. Andre F, Job B, Dessen P, Tordai A, Michiels S, Liedtke C, Richon C, Yan K, Wang B, Vassal G, Delaloge S, Hortobagyi GN, Symmans WF, Lazar V, Pusztai L (2009) Molecular characterization of breast cancer with high-resolution oligonucleotide comparative genomic hybridization array. Clin Cancer Res 15(2):441–451. doi:10.1158/1078-0432.CCR-08-1791

    Article  PubMed  CAS  Google Scholar 

  42. Rennstam K, Ahlstedt-Soini M, Baldetorp B, Bendahl PO, Borg A, Karhu R, Tanner M, Tirkkonen M, Isola J (2003) Patterns of chromosomal imbalances defines subgroups of breast cancer with distinct clinical features and prognosis. A study of 305 tumors by comparative genomic hybridization. Cancer Res 63(24):8861–8868

    PubMed  CAS  Google Scholar 

  43. Rudlowski C, Schulten HJ, Golas MM, Sander B, Barwing R, Palandt JE, Schlehe B, Lindenfelser R, Moll R, Liersch T, Schumpelick V, Gunawan B, Fuzesi L (2006) Comparative genomic hybridization analysis on male breast cancer. Int J Cancer 118(10):2455–2460. doi:10.1002/ijc.21646

    Article  PubMed  CAS  Google Scholar 

  44. Nahleh ZA (2006) Hormonal therapy for male breast cancer: a different approach for a different disease. Cancer Treat Rev 32(2):101–105. doi:10.1016/j.ctrv.2005.12.007

    Article  PubMed  CAS  Google Scholar 

  45. Tirkkonen M, Kainu T, Loman N, Johannsson OT, Olsson H, Barkardottir RB, Kallioniemi OP, Borg A (1999) Somatic genetic alterations in BRCA2-associated and sporadic male breast cancer. Genes Chromosomes Cancer 24(1):56–61

    Article  PubMed  CAS  Google Scholar 

  46. Howard BA, Gusterson BA (2000) Human breast development. J Mammary Gland Biol Neoplasia 5(2):119–137

    Article  PubMed  CAS  Google Scholar 

  47. Russo J, Tay LK, Russo IH (1982) Differentiation of the mammary gland and susceptibility to carcinogenesis. Breast Cancer Res Treat 2(1):5–73

    Article  PubMed  CAS  Google Scholar 

  48. Pich A, Margaria E, Chiusa L, Ponti R, Geuna M (1996) DNA ploidy and p53 expression correlate with survival and cell proliferative activity in male breast carcinoma. Hum Pathol 27(7):676–682

    Article  PubMed  CAS  Google Scholar 

  49. Bagwell CB, Clark GM, Spyratos F, Chassevent A, Bendahl PO, Stal O, Killander D, Jourdan ML, Romain S, Hunsberger B, Baldetorp B (2001) Optimizing flow cytometric DNA ploidy and S-phase fraction as independent prognostic markers for node-negative breast cancer specimens. Cytometry 46(3):121–135

    Article  PubMed  CAS  Google Scholar 

  50. Pinto AE, Andre S, Soares J (1999) Short-term significance of DNA ploidy and cell proliferation in breast carcinoma: a multivariate analysis of prognostic markers in a series of 308 patients. J Clin Pathol 52(8):604–611

    Article  PubMed  CAS  Google Scholar 

  51. Zhu YS (2005) Molecular basis of steroid action in the prostate. Cellscience 1(4):27–55. doi:10.1901/jaba.2005.1-27

    PubMed  Google Scholar 

  52. McConnell JD, Roehrborn CG, Bautista OM, Andriole GL Jr, Dixon CM, Kusek JW, Lepor H, McVary KT, Nyberg LM Jr, Clarke HS, Crawford ED, Diokno A, Foley JP, Foster HE, Jacobs SC, Kaplan SA, Kreder KJ, Lieber MM, Lucia MS, Miller GJ, Menon M, Milam DF, Ramsdell JW, Schenkman NS, Slawin KM, Smith JA, Medical Therapy of Prostatic Symptoms Research Group (2003) The long-term effect of doxazosin, finasteride, and combination therapy on the clinical progression of benign prostatic hyperplasia. N Engl J Med 349(25):2387–2398. doi:10.1056/NEJMoa030656

    Article  PubMed  CAS  Google Scholar 

  53. Trifiro MD, Parsons JK, Palazzi-Churas K, Bergstrom J, Lakin C, Barrett-Connor E (2009) Serum sex hormones and the 20-year risk of lower urinary tract symptoms in community-dwelling older men. BJU Int 105(11):1554–1559. doi:10.1111/j.1464-410X.2009.09090.x

    Article  PubMed  Google Scholar 

  54. Hedenfalk I, Duggan D, Chen Y, Radmacher M, Bittner M, Simon R, Meltzer P, Gusterson B, Esteller M, Kallioniemi OP, Wilfond B, Borg A, Trent J (2001) Gene-expression profiles in hereditary breast cancer. N Engl J Med 344(8):539–548. doi:10.1056/NEJM200102223440801

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Pathology Departments within the South Sweden Health Care Region for providing tissue for the study. This study was supported by grants from the Swedish Cancer Society, the G Nilsson Cancer Foundation, the Mrs. B Kamprad Foundation, and the Lund University Hospital Research Foundation. IH was supported by the Swedish Cancer Society. The SCIBLU Genomics center is supported by governmental funding of clinical research within the national health services (ALF) and by Lund University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingrid Hedenfalk.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 819 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johansson, I., Nilsson, C., Berglund, P. et al. High-resolution genomic profiling of male breast cancer reveals differences hidden behind the similarities with female breast cancer. Breast Cancer Res Treat 129, 747–760 (2011). https://doi.org/10.1007/s10549-010-1262-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-010-1262-8

Keywords

Navigation