Skip to main content

Advertisement

Log in

RAD51 135G>C polymorphism and breast cancer risk: a meta-analysis

  • Epidemiology
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Mutations in RAD51 gene are believed to be associated with elevated breast cancer risk. However, several case–control studies focusing on the association between RAD51 135G>C and breast cancer risk failed to achieve consensus. To clarify the effect of RAD51 135G>C polymorphism on breast cancer, a meta-analysis was performed. By searching PubMed and EMBASE, a total of 14 case–control studies, containing 12,183 cases and 10,183 controls, were included. The strength of association between RAD51 135G>C polymorphism and breast cancer risk was assessed by odds ratio (OR) with the corresponding 95% confidence interval (95% CI). When all the eligible studies were pooled into the meta-analysis, an elevated cancer risk was revealed in additive model (OR, 1.34; 95% CI, 1.01–1.78; P = 0.044) and recessive model (OR, 1.37; 95% CI, 1.03–1.82; P = 0.032). In subgroup analyses by ethnicity, BRCA1/2 mutation status, and family history, a significant association was found only among BRCA2 mutation carriers (additive model: OR, 4.92; 95% CI, 1.11–21.83; P = 0.036; recessive model: OR, 4.88; 95% CI, 1.10–21.67; P = 0.037). Sensitivity analysis did not perturb the results. In conclusion, this meta-analysis suggests that RAD51 variant 135C homozygote is associated with elevated breast cancer risk among BRCA2 mutation carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hughes DJ (2008) Use of association studies to define genetic modifiers of breast cancer risk in BRCA1 and BRCA2 mutation carriers. Fam Cancer 7:233–244. doi:10.1007/s10689-008-9181-0

    Article  CAS  PubMed  Google Scholar 

  2. Baumann P, West SC (1998) Role of the human RAD51 protein in homologous recombination and double-stranded-break repair. Trends Biochem Sci 23:247–251. doi:10.1016/S0968-0004(98)01232-8

    Article  CAS  PubMed  Google Scholar 

  3. Thacker J (2005) The RAD51 gene family, genetic instability and cancer. Cancer Lett 219:125–135. doi:10.1016/j.canlet.2004.08.018

    Article  CAS  PubMed  Google Scholar 

  4. Hasselbach L, Haase S, Fischer D, Kolberg HC, Sturzbecher HW (2005) Characterisation of the promoter region of the human DBA-repair gene RAD51. Eur J Gynaecol Oncol 26:589–598

    CAS  PubMed  Google Scholar 

  5. Wang WW, Spurdle AB, Kolachana P, Bove B, Modan B, Ebbers SM, Suthers G, Tucker MA, Kaufman DJ, Doody MM, Tarone RE, Daly M, Levavi H, Pierce H, Chetrit A, Yechezkel GH, Chenevix-Trench G, Offit K, Godwin AK, Struewing JP (2001) A single nucleotide polymorphism in the 5’ untranslated region of RAD51 and risk of cancer among BRCA1/2 mutation carriers. Cancer Epidemiol Biomarkers Prev 10:955–960

    CAS  PubMed  Google Scholar 

  6. Kadouri L, Kote-Jarai Z, Hubert A, Durocher F, Abeliovich D, Glaser B, Hamburger T, Eeles RA, Peretz T (2004) A single-nucleotide polymorphism in the RAD51 gene modifies breast cancer risk in BRCA2 carriers, but not in BRCA1 carriers or noncarriers. Br J Cancer 90:2002–2005. doi:10.1038/sj.bjc.6601837

    Article  CAS  PubMed  Google Scholar 

  7. Levy-Lahad E, Lahad A, Eisenberg S, Dagan E, Paperna T, Kasinetz L, Catane R, Kaufman B, Beller U, Renbaum P, Gershoni-Baruch R (2001) A single nucleotide polymorphism in the RAD51 gene modifies cancer risk in BRCA2 but not BRCA1 carriers. Proc Natl Acad Sci USA 98:3232–3236. doi:10.1073/pnas.051624098

    Article  CAS  PubMed  Google Scholar 

  8. Antoniou AC, Sinilnikova OM, Simard J, Léoné M, Dumont M, Neuhausen SL, Struewing JP, Stoppa-Lyonnet D, Barjhoux L, Hughes DJ, Coupier I, Belotti M, Lasset C, Bonadona V, Bignon YJ; Genetic Modifiers of Cancer Risk in BRCA1/2 Mutation Carriers Study (GEMO), Rebbeck TR, Wagner T, Lynch HT, Domchek SM, Nathanson KL, Garber JE, Weitzel J, Narod SA, Tomlinson G, Olopade OI, Godwin A, Isaacs C, Jakubowska A, Lubinski J, Gronwald J, Górski B, Byrski T, Huzarski T, Peock S, Cook M, Baynes C, Murray A, Rogers M, Daly PA, Dorkins H; Epidemiological Study of BRCA1 and BRCA2 Mutation Carriers (EMBRACE), Schmutzler RK, Versmold B, Engel C, Meindl A, Arnold N, Niederacher D, Deissler H; German Consortium for Hereditary Breast and Ovarian Cancer (GCHBOC), Spurdle AB, Chen X, Waddell N, Cloonan N; Kathleen Cuningham Consortium for Research into Familial Breast Cancer (kConFab), Kirchhoff T, Offit K, Friedman E, Kaufmann B, Laitman Y, Galore G, Rennert G, Lejbkowicz F, Raskin L, Andrulis IL, Ilyushik E, Ozcelik H, Devilee P, Vreeswijk MP, Greene MH, Prindiville SA, Osorio A, Benitez J, Zikan M, Szabo CI, Kilpivaara O, Nevanlinna H, Hamann U, Durocher F, Arason A, Couch FJ, Easton DF, Chenevix-Trench G; Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) (2007) RAD51 135G > C modifies breast cancer risk among BRCA2 mutation carriers: results from a combined analysis of 19 studies. Am J Hum Genet 81:1186–1200. doi:10.1086/522611

  9. Jakubowska A, Jaworska K, Cybulski C, Janicka A, Szymańska-Pasternak J, Lener M, Narod SA, Lubiński J, IHCC-Breast Cancer Study Group (2009) Do BRCA1 modifiers also affect the risk of breast cancer in non-carriers? Eur J Cancer 45:837–842. doi:10.1016/j.ejca.2008.10.021

    Article  CAS  PubMed  Google Scholar 

  10. Costa S, Pinto D, Pereira D, Rodrigues H, Cameselle-Teijeiro J, Medeiros R, Schmitt F (2007) DNA repair polymorphisms might contribute differentially on familial and sporadic breast cancer susceptibility: a study on a Portuguese population. Breast Cancer Res Treat 103:209–217. doi:10.1007/s10549-006-9364-z

    Article  CAS  PubMed  Google Scholar 

  11. Jakubowska A, Narod SA, Goldgar DE, Mierzejewski M, Masojć B, Nej K, Huzarska J, Byrski T, Górski B, Lubiński J (2003) Breast cancer risk reduction associated with the RAD51 polymorphism among carriers of the BRCA1 5382insC mutation in Poland. Cancer Epidemiol Biomarkers Prev 12:457–459

    CAS  PubMed  Google Scholar 

  12. Jakubowska A, Gronwald J, Menkiszak J, Górski B, Huzarski T, Byrski T, Edler L, Lubiñski J, Scott RJ, Hamann U (2007) The RAD51 135G > C polymorphism modifies breast cancer and ovarian cancer risk in Polish BRCA1 mutation carriers. Cancer Epidemiol Biomarkers Prev 16:270–275. doi:10.1158/1055-9965.EPI-06-0562

    Article  CAS  PubMed  Google Scholar 

  13. Dufloth RM, Costa S, Schmitt F, Zeferino LC (2005) DNA repair gene polymorphisms and susceptibility to familial breast cancer in a group of patients from Campinas, Brazil. Genet Mol Res 4:771–782

    CAS  PubMed  Google Scholar 

  14. Mantel N, Haenszel W (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 22:719–748

    CAS  PubMed  Google Scholar 

  15. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7:177–188

    Article  CAS  PubMed  Google Scholar 

  16. Cochran WG (1954) The combination of estimates from different experiments. Biometrics 10:101–129

    Article  Google Scholar 

  17. Tobias A (1999) Assessing the influence of a single study in the meta-analysis estimate. Stata Tecnol Bull 8:15–17

    Google Scholar 

  18. Egger M, Davey SG, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315:629–634

    CAS  PubMed  Google Scholar 

  19. Gal I, Kimmel G, Gershoni-Baruch R, Papa MZ, Dagan E, Shamir R, Friedman E (2006) A specific RAD51 haplotype increases breast cancer risk in Jewish non-Ashkenazi high-risk women. Eur J Cancer 42:1129–1134. doi:10.1016/j.ejca.2005.09.035

    Article  CAS  PubMed  Google Scholar 

  20. Romanowicz-Makowska H, Smolarz B, Kulig A (2005) Germline BRCA1 mutations and G/C polymorphism in the 5’-untranslated region of the RAD51 gene in Polish women with breast cancer. Pol J Pathol 56:161–165

    PubMed  Google Scholar 

  21. Romanowicz-Makowska H, Smolarz B (2006) Analysis of loss of heterozygosity and microsatellite instability RAD52, RAD54 and RAD54B gene and BRCA1 gene mutation in breast cancer. Pol Merkur Lekarski 21:548–550 Polish

    CAS  PubMed  Google Scholar 

  22. Romanowicz-Makowska H, Smolarz B, Kulig A (2006) The G/C polymorphism of RAD51 gene in breast cancer. Pol Merkur Lekarski 21:55–58 Polish

    CAS  PubMed  Google Scholar 

  23. Blasiak J, Przybyłowska K, Czechowska A, Zadrozny M, Pertyński T, Rykała J, Kołacińska A, Morawiec Z, Drzewoski J (2003) Analysis of the G/C polymorphism in the 5’-untranslated region of the RAD51 gene in breast cancer. Acta Biochim Pol 50:249–253

    CAS  PubMed  Google Scholar 

  24. Romanowicz-Makowska H, Smolarz B, Zadrozny M, Kulig A (2006) Analysis of RAD51 polymorphism and BRCA1 mutations in Polish women with breast cancer. Exp Oncol 28:156–159

    CAS  PubMed  Google Scholar 

  25. Synowiec E, Stefanska J, Morawiec Z, Blasiak J, Wozniak K (2008) Association between DNA damage, DNA repair genes variability and clinical characteristics in breast cancer patients. Mutat Res 648:65–72. doi:10.1016/j.mrfmmm.2008.09.014

    CAS  PubMed  Google Scholar 

  26. Krupa R, Synowiec E, Pawlowska E, Morawiec Z, Sobczuk A, Zadrozny M, Wozniak K, Blasiak J (2009) Polymorphism of the homologous recombination repair genes RAD51 and XRCC3 in breast cancer. Exp Mol Pathol 87:32–35. doi:10.1016/jyexmp2009.04.005

    Article  CAS  PubMed  Google Scholar 

  27. Jara L, Acevedo ML, Blanco R, Castro VG, Bravo T, Gómez F, Waugh E, Peralta O, Cabrera E, Reyes JM, Ampuero S, González-Hormazábal P (2007) RAD51 135G > C polymorphism and risk of familial breast cancer in a South American population. Cancer Genet Cytogenet 178:65–69. doi:10.1016/j.cancergencyto.2007.05.024

    Article  CAS  PubMed  Google Scholar 

  28. Sliwinski T, Krupa R, Majsterek I, Rykala J, Kolacinska A, Morawiec Z, Drzewoski J, Zadrozny M, Blasiak J (2005) Polymorphisms of the BRCA2 and RAD51 genes in breast cancer. Breast Cancer Res Treat 94:105–109. doi:10.1007/s10549-005-0672-5

    Article  CAS  PubMed  Google Scholar 

  29. Jara L, Dubois K, Gaete D, de Mayo T, Ratkevicius N, Bravo T, Margarit S, Blanco R, Gómez F, Waugh E, Peralta O, Reyes JM, Ibáñez G, González-Hormazábal P (2010) Variants in DNA double-strand break repair genes and risk of familial breast cancer in a South American population. Breast Cancer Res Treat. doi:10.1007/s10549-009-0709-2

  30. Kuschel B, Auranen A, McBride S, Novik KL, Antoniou A, Lipscombe JM, Day NE, Easton DF, Ponder BA, Pharoah PD, Dunning A (2002) Variants in DNA double-strand break repair genes and breast cancer susceptibility. Hum Mol Genet 11:1399–1407. doi:10.1093/hmg/11.12.1399

    Article  CAS  PubMed  Google Scholar 

  31. Lee KM, Choi JY, Kang C, Kang CP, Park SK, Cho H, Cho DY, Yoo KY, Noh DY, Ahn SH, Park CG, Wei Q, Kang D (2005) Genetic polymorphisms of selected DNA repair genes, estrogen and progesterone receptor status, and breast cancer risk. Clin Cancer Res 11:4620–4626. doi:10.1158/1078-0432.CCR-04-2534

    Article  CAS  PubMed  Google Scholar 

  32. Webb PM, Hopper JL, Newman B, Chen X, Kelemen L, Giles GG, Southey MC, Chenevix-Trench G, Spurdle AB (2005) Double-strand break repair gene polymorphisms and risk of breast or ovarian cancer. Cancer Epidemiol Biomarkers Prev 14:319–323. doi:10.1158/1055-9965.EPI-04-0335

    Article  CAS  PubMed  Google Scholar 

  33. Chang TW, Wang SM, Guo YL, Tsai PC, Huang CJ, Huang W (2006) Glutathione S-transferase polymorphisms associated with risk of breast cancer in southern Taiwan. Breast 15:754–761. doi:10.1016/j.breast.2006.03.008

    Article  PubMed  Google Scholar 

  34. Brooks J, Shore RE, Zeleniuch-Jacquotte A, Currie D, Afanasyeva Y, Koenig KL, Arslan AA, Toniolo P, Wirgin I (2008) Polymorphisms in RAD51, XRCC2, and XRCC3 are not related to breast cancer risk. Cancer Epidemiol Biomarkers Prev 17:1016–1019. doi:10.1158/1055-9965.EPI-08-0065

    Article  CAS  PubMed  Google Scholar 

  35. Hu R, Wei Y, Jiang WJ, Yao WX, Long QM, Zhang JH, Liang Y, Tang XL (2008) Association of polymorphisms of N372H in BRCA2 gene and 135G/C in RAD51 gene and breast cancers. Sichuan Da Xue Xue Bao Yi Xue Ban 39:973–975 Chinese

    CAS  PubMed  Google Scholar 

  36. Akisik E, Yazici H, Dalay N (2010) ARLTS1, MDM2 and RAD51 gene variations are associated with familial breast cancer. Mol Biol Rep. doi:10.1007/s11033-010-0113-3

  37. Wooster R, Weber BL (2003) Breast and ovarian cancer. N Engl J Med 348:2339–2347. doi:10.1056/NEJMra012284

    Article  CAS  PubMed  Google Scholar 

  38. Berlin JA, Santanna J, Schmid CH, Szczech LA, Feldman HI, Anti-Lymphocyte Antibody Induction Therapy Study Group (2002) Individual patient- versus group-level data meta-regressions for the investigation of treatment effect modifiers: ecological bias rears its ugly head. Stat Med 21:371–387

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Li.

Additional information

G.-W. Zhou and J. Hu equally contributed to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, GW., Hu, J., Peng, XD. et al. RAD51 135G>C polymorphism and breast cancer risk: a meta-analysis. Breast Cancer Res Treat 125, 529–535 (2011). https://doi.org/10.1007/s10549-010-1031-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-010-1031-8

Keywords

Navigation