Skip to main content

Advertisement

Log in

Relevance of circulating tumor cells, extracellular nucleic acids, and exosomes in breast cancer

  • Review
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Early detection of cancer is vital to improved overall survival rates. At present, evidence is accumulating for the clinical value of detecting occult tumor cells in peripheral blood, plasma, and serum specimens from cancer patients. Both molecular and cellular approaches, which differ in sensitivity and specificity, have been used for such means. Circulating tumor cells and extracellular nucleic acids have been detected within blood, plasma, and sera of cancer patients. As the presence of malignant tumors are clinically determined and/or confirmed upon biopsy procurement—which in itself may have detrimental effects in terms of stimulating cancer progression/metastases—minimally invasive methods would be highly advantageous to the diagnosis and prognosis of breast cancer and the subsequent tailoring of targeted treatments for individuals, if reliable panels of biomarkers suitable for such an approach exist. Herein, we review the current advances made in the detection of such circulating tumor cells and nucleic acids, with particular emphasis on extracellular nucleic acids, specifically extracellular mRNAs and discuss their clinical relevance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jemal A et al (2008) Cancer statistics, 2008. CA Cancer J Clin 58(2):71–96

    Article  PubMed  Google Scholar 

  2. Perou C et al (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752

    Article  CAS  PubMed  Google Scholar 

  3. Sotiriou C, Pusztai L (2009) Gene-expression signatures in breast cancer. N Engl J Med 360(8):790–800

    Article  CAS  PubMed  Google Scholar 

  4. Jiang WG et al (2002) Molecular detection of micro-metastasis in breast cancer. Crit Rev Oncol Hematol 43(1):13–31

    Article  PubMed  Google Scholar 

  5. Gilbey AM et al (2004) The detection of circulating breast cancer cells in blood. J Clin Pathol 57(9):903–911

    Article  CAS  PubMed  Google Scholar 

  6. Pantel K, Brakenhoff R (2004) Dissecting the metastatic cascade. Nat Rev Cancer 4(6):448–456

    Article  CAS  PubMed  Google Scholar 

  7. Al-Hajj M et al (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100(7):3983–3988

    Article  CAS  PubMed  Google Scholar 

  8. Zhang S et al (2008) Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res 68(11):4311–4320

    Article  CAS  PubMed  Google Scholar 

  9. Baba T et al (2009) Epigenetic regulation of CD133 and tumorigenicity of CD133+ ovarian cancer cells. Oncogene 28(2):209–218

    Article  CAS  PubMed  Google Scholar 

  10. Curley M et al (2009) CD133 Expression defines a tumor initiating cell population in primary human ovarian cancer. Stem Cells 27(12):2875–2883

    CAS  PubMed  Google Scholar 

  11. Rutella S et al (2009) Cells with characteristics of cancer stem/progenitor cells express the CD133 antigen in human endometrial tumors. Clin Cancer Res 15(13):4299–4311

    Article  CAS  PubMed  Google Scholar 

  12. Ashworth T (1869) A case of cancer in which cells similar to those in the tumours were seen in the blood after death. Aust Med J 14:146–147

    Google Scholar 

  13. Allan AL, Keeney M (2010) Circulating tumor cell analysis: technical and statistical considerations for application to the clinic. J Oncol 2010:426218

    PubMed  Google Scholar 

  14. Liu M et al (2009) Circulating tumor cells: a useful predictor of treatment efficacy in metastatic breast cancer. J Clin Oncol 27(31):5153–5159

    Article  PubMed  Google Scholar 

  15. Cristofanilli M et al (2004) Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 351(8):781–791

    Article  CAS  PubMed  Google Scholar 

  16. Budd G et al (2006) Circulating tumor cells versus imaging–predicting overall survival in metastatic breast cancer. Clin Cancer Res 12(21):6403–6409

    Article  CAS  PubMed  Google Scholar 

  17. Hayes D et al (2006) Circulating tumor cells at each follow-up time point during therapy of metastatic breast cancer patients predict progression-free and overall survival. Clin Cancer Res 12(141):4218–4224

    Article  CAS  PubMed  Google Scholar 

  18. Pierga J et al (2008) Circulating tumor cell detection predicts early metastatic relapse after neoadjuvant chemotherapy in large operable and locally advanced breast cancer in a phase II randomized trial. Clin Cancer Res 14(21):7004–7010

    Article  CAS  PubMed  Google Scholar 

  19. Harris L et al (2007) American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol 25(33):5287–5312

    Article  CAS  PubMed  Google Scholar 

  20. Nagrath S et al (2007) Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450(7173):1235–1239

    Article  CAS  PubMed  Google Scholar 

  21. Tewes M et al (2009) Molecular profiling and predictive value of circulating tumor cells in patients with metastatic breast cancer: an option for monitoring response to breast cancer related therapies. Breast Cancer Res Treat 115(3):581–590

    Article  PubMed  Google Scholar 

  22. Alix-Panabières C et al (2005) Characterization and enumeration of cells secreting tumor markers in the peripheral blood of breast cancer patients. J Immunol Methods 299(1–2):177–188

    Article  PubMed  CAS  Google Scholar 

  23. Alix-Panabières C et al (2007) Detection and characterization of putative metastatic precursor cells in cancer patients. Clin Chem 53(3):537–539

    Article  PubMed  CAS  Google Scholar 

  24. Fehm T et al (2009) Detection and characterization of circulating tumor cells in blood of primary breast cancer patients by RT-PCR and comparison to status of bone marrow disseminated cells. Breast Cancer Res 11(4):R59

    Article  PubMed  CAS  Google Scholar 

  25. Fehm T et al (2007) Determination of HER2 status using both serum HER2 levels and circulating tumor cells in patients with recurrent breast cancer whose primary tumor was HER2 negative or of unknown HER2 status. Breast Cancer Res 9(5):R74

    Article  PubMed  CAS  Google Scholar 

  26. Alunni-Fabbroni M, Sandri M (2010) Circulating tumour cells in clinical practice: methods of detection and possible characterization. Methods 50(4):289–297

    Article  CAS  PubMed  Google Scholar 

  27. Vona G et al (2000) Isolation by size of epithelial tumor cells: a new method for the immunomorphological and molecular characterization of circulating tumor cells. Am J Pathol 156(1):57–63

    CAS  PubMed  Google Scholar 

  28. Gertler R et al (2003) Detection of circulating tumor cells in blood using an optimized density gradient centrifugation. Recent Results Cancer Res 162:149–155

    PubMed  Google Scholar 

  29. Müller V et al (2005) Circulating tumor cells in breast cancer: correlation to bone marrow micrometastases, heterogeneous response to systemic therapy and low proliferative activity. Clin Cancer Res 11(10):3678–3685

    Article  PubMed  Google Scholar 

  30. Naume B et al (2004) Detection of isolated tumor cells in peripheral blood and in BM: evaluation of a new enrichment method. Cytotherapy 6(3):244–252

    Article  CAS  PubMed  Google Scholar 

  31. Hayes G et al (2010) Isolation of malignant B cells from patients with chronic lymphocytic leukemia (CLL) for analysis of cell proliferation: validation of a simplified method suitable for multi-center clinical studies. Leuk Res 34(6):809–815

    Google Scholar 

  32. Mostert B et al (2009) Circulating tumor cells (CTCs): detection methods and their clinical relevance in breast cancer. Cancer Treat Rev 35(5):463–474

    Article  CAS  PubMed  Google Scholar 

  33. Cristofanilli M, Braun S (2010) Circulating tumor cells revisited. JAMA 303(11):1092–1093

    Article  PubMed  Google Scholar 

  34. Fehm T et al (2005) Methods for isolating circulating epithelial cells and criteria for their classification as carcinoma cells. Cytotherapy 7(2):171–185

    Article  CAS  PubMed  Google Scholar 

  35. Austrup F et al (2000) Prognostic value of genomic alterations in minimal residual cancer cells purified from the blood of breast cancer patients. Br J Cancer 83(12):1664–1673

    Article  CAS  PubMed  Google Scholar 

  36. Fehm T et al (2002) Cytogenetic evidence that circulating epithelial cells in patients with carcinoma are malignant. Clin Cancer Res 8(7):2073–2084

    CAS  PubMed  Google Scholar 

  37. Meng S et al (2006) uPAR and HER-2 gene status in individual breast cancer cells from blood and tissues. Proc Natl Acad Sci USA 103(46):17361–17365

    Article  CAS  PubMed  Google Scholar 

  38. Meng S et al (2004) HER-2 gene amplification can be acquired as breast cancer progresses. Proc Natl Acad Sci USA 101(25):9393–9398

    Article  CAS  PubMed  Google Scholar 

  39. Pantel K et al (2008) Detection, clinical relevance and specific biological properties of disseminating tumour cells. Nat Rev Cancer 8(5):329–340

    Article  CAS  PubMed  Google Scholar 

  40. Braun S et al (2009) The prognostic impact of bone marrow micrometastases in women with breast cancer. Cancer Invest 27(6):598–603

    Article  CAS  PubMed  Google Scholar 

  41. Braun S et al (2005) A pooled analysis of bone marrow micrometastasis in breast cancer. N Engl J Med 353(8):793–802

    Article  CAS  PubMed  Google Scholar 

  42. Janni W et al (2005) The persistence of isolated tumor cells in bone marrow from patients with breast carcinoma predicts an increased risk for recurrence. Cancer 103(5):884–891

    Article  PubMed  Google Scholar 

  43. Krawczyk N et al (2009) HER2 status on persistent disseminated tumor cells after adjuvant therapy may differ from initial HER2 status on primary tumor. Anticancer Res 29(10):4019–4024

    PubMed  Google Scholar 

  44. Mandel P, Metais P (1948) Les acides nucleiques du plasma sanguine chez l’homme (in French). C R Seances Soc Biol Fil 142(3–4):241–243

    CAS  PubMed  Google Scholar 

  45. Tan EM et al (1966) Deoxybonucleic acid (DNA) and antibodies to DNA in the serum of patients with systemic lupus erythematosus. J Clin Invest 45(11):1732–1740

    Article  CAS  PubMed  Google Scholar 

  46. Koffler D et al (1973) The occurrence of single-stranded DNA in the serum of patients with systemic lupus erythematosus and other diseases. J Clin Invest 52(1):198–204

    Article  CAS  PubMed  Google Scholar 

  47. Leon S et al (1977) Free DNA in the serum of rheumatoid arthritis patients. J Rheumatol 4(2):139–143

    CAS  PubMed  Google Scholar 

  48. Leon S et al (1977) Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res 37(3):646–650

    CAS  PubMed  Google Scholar 

  49. Stroun M et al (1989) Neoplastic characteristics of the DNA found in the plasma of cancer patients. Oncology 46(5):318–322

    Article  CAS  PubMed  Google Scholar 

  50. Sorenson G et al (1994) Soluble normal and mutated DNA sequences from single-copy genes in human blood. Cancer Epidemiol Biomarkers Prev 3(1):67–71

    Google Scholar 

  51. Vasioukhin V et al (1994) Point mutations of the N-ras gene in the blood plasma DNA of patients with myelodysplastic syndrome or acute myelogenous leukaemia. Br J Haematol 86(4):774–779

    Article  CAS  PubMed  Google Scholar 

  52. Kohler C et al (2009) Levels of plasma circulating cell free nuclear and mitochondrial DNA as potential biomarkers for breast tumors. Mol Cancer 8:105

    Article  PubMed  CAS  Google Scholar 

  53. Divella R et al (2009) Circulating hTERT DNA in early breast cancer. Anticancer Res 29(7):2845–2849

    CAS  PubMed  Google Scholar 

  54. Van der Auwera I et al (2009) The presence of circulating total DNA and methylated genes is associated with circulating tumour cells in blood from breast cancer patients. Br J Cancer 100(8):1277–1286

    Article  PubMed  CAS  Google Scholar 

  55. van der Drift M et al (2010) Circulating DNA is a non-invasive prognostic factor for survival in non-small cell lung cancer. Lung Cancer 68(2):283–287

    Article  PubMed  Google Scholar 

  56. Yoon K et al (2009) Comparison of circulating plasma DNA levels between lung cancer patients and healthy controls. J Mol Diagn 11(3):182–185

    Article  CAS  PubMed  Google Scholar 

  57. Yen L et al (2009) Detection of KRAS oncogene in peripheral blood as a predictor of the response to cetuximab plus chemotherapy in patients with metastatic colorectal cancer. Clin Cancer Res 15(13):4508–4513

    Article  CAS  PubMed  Google Scholar 

  58. Ellinger J et al (2009) CpG island hypermethylation of cell-free circulating serum DNA in patients with testicular cancer. J Urol 182(1):324–329

    Article  CAS  PubMed  Google Scholar 

  59. Board R et al (2009) Detection of BRAF mutations in the tumour and serum of patients enrolled in the AZD6244 (ARRY-142886) advanced melanoma phase II study. Br J Cancer 101(10):1724–1730

    Article  CAS  PubMed  Google Scholar 

  60. Chuang T et al (2010) Detectable BRAF mutation in serum DNA samples from patients with papillary thyroid carcinomas. Head Neck 32(2):229–234

    PubMed  Google Scholar 

  61. Schwarzenbach H et al (2009) Comparative evaluation of cell-free tumor DNA in blood and disseminated tumor cells in bone marrow of patients with primary breast cancer. Breast Cancer Res 11(5):R71

    Article  PubMed  CAS  Google Scholar 

  62. Marrakchi R et al (2008) Detection of cytokeratin 19 mRNA and CYFRA 21-1 (cytokeratin 19 fragments) in blood of Tunisian women with breast cancer. Int J Biol Markers 23(4):238–243

    Google Scholar 

  63. García V et al (2008) Free circulating mRNA in plasma from breast cancer patients and clinical outcome. Cancer Lett 263(2):312–320

    Article  PubMed  CAS  Google Scholar 

  64. O’Driscoll L et al (2008) Feasibility and relevance of global expression profiling of gene transcripts in serum from breast cancer patients using whole genome microarrays and quantitative RT-PCR. Cancer Genomics Proteomics 5(2):94–104

    PubMed  Google Scholar 

  65. Terrin L et al (2008) Relationship between tumor and plasma levels of hTERT mRNA in patients with colorectal cancer: implications for monitoring of neoplastic disease. Clin Cancer Res 14(22):7444–7451

    Article  CAS  PubMed  Google Scholar 

  66. Vrieling A et al (2009) Expression of insulin-like growth factor system components in colorectal tissue and its relation with serum IGF levels. Growth Horm IGF Res 19(2):126–135

    Article  CAS  PubMed  Google Scholar 

  67. Fleischhacker M, Schmidt B (2007) Circulating nucleic acids (CNAs) and cancer—a survey. Biochim Biophys Acta 1775(1):181–232

    CAS  PubMed  Google Scholar 

  68. Rieber M, Bacalao J (1974) An “external” RNA removable from mammalian cells by mild proteolysis. Proc Natl Acad Sci USA 71(12):4960–4964

    Article  CAS  PubMed  Google Scholar 

  69. Laktionov PP et al (2004) Cell-surface-bound nucleic acids: free and cell-surface-bound nucleic acids in blood of healthy donors and breast cancer patients. Ann NY Acad Sci 1022:221–227

    Article  CAS  PubMed  Google Scholar 

  70. Chelobanov BP et al (2004) Isolation of nucleic acid binding proteins: an approach for isolation of cell surface, nucleic acid binding proteins. Ann NY Acad Sci 1022:239–243

    Article  CAS  PubMed  Google Scholar 

  71. Wieczorek AJ, Rhyner K (1989) A gene probe test for serum RNA proteolipid in neoplasia. Schweiz Med Wochenschr 119(39):1342–1343

    CAS  PubMed  Google Scholar 

  72. Wieczorek AJ et al (1985) Isolation and characterization of an RNA–proteolipid complex associated with the malignant state in humans. Proc Natl Acad Sci USA 82(10):3455–3459

    Article  CAS  PubMed  Google Scholar 

  73. Hasselmann DO et al (2001) Extracellular tyrosinase mRNA within apoptotic bodies is protected from degradation in human serum. Clin Chem 47(8):1488–1489

    CAS  PubMed  Google Scholar 

  74. Stroun M et al (1978) Presence of RNA in the nucleoprotein complex spontaneously released by human lymphocytes and frog auricles in culture. Cancer Res 38(10):3546–3554

    CAS  PubMed  Google Scholar 

  75. Jachertz D et al (1979) Information carried by the DNA released by antigen-stimulated lymphocytes. Immunology 37(4):753–763

    CAS  PubMed  Google Scholar 

  76. Anker P et al (1999) Detection of circulating tumour DNA in the blood (plasma/serum) of cancer patients. Cancer Metastasis Rev 18(1):65–73

    Article  CAS  PubMed  Google Scholar 

  77. Jahr JS et al (2001) A novel approach to measuring circulating blood volume: the use of a hemoglobin-based oxygen carrier in a rabbit model. Anesth Analg 92(3):609–614

    Article  CAS  PubMed  Google Scholar 

  78. Skog J et al (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10(12):1470–1476

    Article  CAS  PubMed  Google Scholar 

  79. Wright LC et al (1986) A proteolipid in cancer cells is the origin of their high-resolution NMR spectrum. FEBS Lett 203(2):164–168

    Article  CAS  PubMed  Google Scholar 

  80. Rosi A et al (1988) RNA–lipid complexes released from the plasma membrane of human colon carcinoma cells. Cancer Lett 39(2):153–160

    Article  CAS  PubMed  Google Scholar 

  81. Ceccarini M et al (1989) Biochemical and NMR studies on structure and release conditions of RNA-containing vesicles shed by human colon adenocarcinoma cells. Int J Cancer 44(4):714–721

    Article  CAS  PubMed  Google Scholar 

  82. Ratajczak J et al (2006) Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia 20(9):1487–1495

    Article  CAS  PubMed  Google Scholar 

  83. Graner MW et al (2009) Proteomic and immunologic analyses of brain tumor exosomes. FASEB J 23(5):1541–1557

    Article  CAS  PubMed  Google Scholar 

  84. Thery C et al (2002) Exosomes: composition, biogenesis and function. Nat Rev Immunol 2(8):569–579

    CAS  PubMed  Google Scholar 

  85. Keller S et al (2006) Exosomes: from biogenesis and secretion to biological function. Immunol Lett 107(2):102–108

    Article  CAS  PubMed  Google Scholar 

  86. Calzolari A et al (2006) TfR2 localizes in lipid raft domains and is released in exosomes to activate signal transduction along the MAPK pathway. J Cell Sci 119(Pt 21):4486–4498

    Article  CAS  PubMed  Google Scholar 

  87. Valadi H et al (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659

    Article  CAS  PubMed  Google Scholar 

  88. Safaei R et al (2005) Abnormal lysosomal trafficking and enhanced exosomal export of cisplatin in drug-resistant human ovarian carcinoma cells. Mol Cancer Ther 4(10):1595–1604

    Article  CAS  PubMed  Google Scholar 

  89. Chaput N et al (2005) The potential of exosomes in immunotherapy. Expert Opin Biol Ther 5(6):737–747

    Article  CAS  PubMed  Google Scholar 

  90. Liu C et al (2006) Murine mammary carcinoma exosomes promote tumor growth by suppression of NK cell function. J Immunol 176(3):1375–1385

    CAS  PubMed  Google Scholar 

  91. Ginestra A et al (1998) The amount and proteolytic content of vesicles shed by human cancer cell lines correlates with their in vitro invasiveness. Anticancer Res 18(5A):3433–3437

    CAS  PubMed  Google Scholar 

  92. Clayton A et al (2007) Human tumor-derived exosomes selectively impair lymphocyte responses to interleukin-2. Cancer Res 67(15):7458–7466

    Article  CAS  PubMed  Google Scholar 

  93. Ng EK et al (2002) Presence of filterable and nonfilterable mRNA in the plasma of cancer patients and healthy individuals. Clin Chem 48(8):1212–1217

    CAS  PubMed  Google Scholar 

  94. O’Driscoll L (2007) Extracellular nucleic acids and their potential as diagnostic, prognostic and predictive biomarkers. Anticancer Res 27(3):1257–1265

    PubMed  Google Scholar 

  95. Rabinowits G et al (2009) Exosomal microRNA: a diagnostic marker for lung cancer. Clin Lung Cancer 10(1):42–46

    Article  CAS  PubMed  Google Scholar 

  96. Silva JM et al (2001) Detection of epithelial messenger RNA in the plasma of breast cancer patients is associated with poor prognosis tumor characteristics. Clin Cancer Res 7(9):2821–2825

    CAS  PubMed  Google Scholar 

  97. Chen X et al (2000) Telomerase RNA as a detection marker in the serum of breast cancer patients. Clin Cancer Res 6(10):3823–3826

    CAS  PubMed  Google Scholar 

  98. Silva J et al (2007) Circulating Bmi-1 mRNA as a possible prognostic factor for advanced breast cancer patients. Breast Cancer Res 9(4):R55

    Article  PubMed  CAS  Google Scholar 

  99. Fuchs E, Weber K (1994) Intermediate filaments: structure, dynamics, function, and disease. Annu Rev Biochem 63:345–382

    CAS  PubMed  Google Scholar 

  100. Dohmoto K et al (2001) The role of caspase 3 in producing cytokeratin 19 fragment (CYFRA21–1) in human lung cancer cell lines. Int J Cancer 91(4):468–473

    Article  CAS  PubMed  Google Scholar 

  101. Pujol JL et al (1993) Serum fragment of cytokeratin subunit 19 measured by CYFRA 21–1 immunoradiometric assay as a marker of lung cancer. Cancer Res 53(1):61–66

    CAS  PubMed  Google Scholar 

  102. Ravdin PM et al (2001) Computer program to assist in making decisions about adjuvant therapy for women with early breast cancer. J Clin Oncol 19(4):980–991

    CAS  PubMed  Google Scholar 

  103. Stathopoulou A et al (2002) Molecular detection of cytokeratin-19-positive cells in the peripheral blood of patients with operable breast cancer: evaluation of their prognostic significance. J Clin Oncol 20(16):3404–3412

    Article  CAS  PubMed  Google Scholar 

  104. Xenidis N et al (2006) Predictive and prognostic value of peripheral blood cytokeratin-19 mRNA-positive cells detected by real-time polymerase chain reaction in node-negative breast cancer patients. J Clin Oncol 24(23):3756–3762

    Article  CAS  PubMed  Google Scholar 

  105. Daskalaki A et al (2009) Detection of cytokeratin-19 mRNA-positive cells in the peripheral blood and bone marrow of patients with operable breast cancer. Br J Cancer 101(4):589–597

    Article  CAS  PubMed  Google Scholar 

  106. Xenidis N et al (2003) Peripheral blood circulating cytokeratin-19 mRNA-positive cells after the completion of adjuvant chemotherapy in patients with operable breast cancer. Ann Oncol 14(6):849–855

    Article  CAS  PubMed  Google Scholar 

  107. Quintela-Fandino M et al (2006) Breast cancer-specific mRNA transcripts presence in peripheral blood after adjuvant chemotherapy predicts poor survival among high-risk breast cancer patients treated with high-dose chemotherapy with peripheral blood stem cell support. J Clin Oncol 24(22):3611–3618

    Article  CAS  PubMed  Google Scholar 

  108. Wiedswang G et al (2004) Isolated tumor cells in bone marrow three years after diagnosis in disease-free breast cancer patients predict unfavorable clinical outcome. Clin Cancer Res 10(16):5342–5348

    Article  PubMed  Google Scholar 

  109. Ignatiadis M et al (2008) Circulating tumor cells in breast cancer. Curr Opin Obstet Gynecol 20(1):55–60

    Article  PubMed  Google Scholar 

  110. Alix-Panabieres C et al (2009) Full-length cytokeratin-19 is released by human tumor cells: a potential role in metastatic progression of breast cancer. Breast Cancer Res 11(3):R39

    Article  PubMed  CAS  Google Scholar 

  111. DePinho R (2000) The age of cancer. Nature 408(6809):248–254

    Article  CAS  PubMed  Google Scholar 

  112. Dasí F et al (2006) Real-time quantification of human telomerase reverse transcriptase mRNA in the plasma of patients with prostate cancer. Ann NY Acad Sci 1075:204–210

    Article  PubMed  CAS  Google Scholar 

  113. Li H et al (2009) Relationship between the expression of hTERT and EYA4 mRNA in peripheral blood mononuclear cells with the progressive stages of carcinogenesis of the esophagus. J Exp Clin Cancer Res 28:145

    Article  PubMed  CAS  Google Scholar 

  114. Elder E et al (2003) KI-67 and hTERT expression can aid in the distinction between malignant and benign pheochromocytoma and paraganglioma. Mod Pathol 16(3):246–255

    Article  PubMed  Google Scholar 

  115. Shen C et al (2009) The detection of circulating tumor cells of breast cancer patients by using multimarker (Survivin, hTERT and hMAM) quantitative real-time PCR. Clin Biochem 42(3):194–200

    Article  CAS  PubMed  Google Scholar 

  116. Jacobs JJ, van Lohuizen M (2002) Polycomb repression: from cellular memory to cellular proliferation and cancer. Biochim Biophys Acta 1602(2):151–161

    CAS  PubMed  Google Scholar 

  117. Raaphorst FM (2005) Deregulated expression of Polycomb-group oncogenes in human malignant lymphomas and epithelial tumors. Hum Mol Genet 14 Spec No 1, R93–R100

  118. Song LB et al (2009) The polycomb group protein Bmi-1 represses the tumor suppressor PTEN and induces epithelial–mesenchymal transition in human nasopharyngeal epithelial cells. J Clin Invest 119(12):3626–3636

    Article  CAS  PubMed  Google Scholar 

  119. Bachmann IM et al (2006) EZH2 expression is associated with high proliferation rate and aggressive tumor subgroups in cutaneous melanoma and cancers of the endometrium, prostate, and breast. J Clin Oncol 24(2):268–273

    Article  CAS  PubMed  Google Scholar 

  120. Kleer CG et al (2003) EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci USA 100(20):11606–11611

    Article  CAS  PubMed  Google Scholar 

  121. van Lohuizen M et al (1991) Identification of cooperating oncogenes in E mu-myc transgenic mice by provirus tagging. Cell 65(5):737–752

    Article  PubMed  Google Scholar 

  122. Liu S et al (2006) Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res 66(12):6063–6071

    Article  CAS  PubMed  Google Scholar 

  123. Kim JH et al (2004) Overexpression of Bmi-1 oncoprotein correlates with axillary lymph node metastases in invasive ductal breast cancer. Breast 13(5):383–388

    Article  PubMed  Google Scholar 

  124. Vonlanthen S et al (2001) The bmi-1 oncoprotein is differentially expressed in non-small cell lung cancer and correlates with INK4A-ARF locus expression. Br J Cancer 84(10):1372–1376

    Article  CAS  PubMed  Google Scholar 

  125. Kim JH et al (2004) The Bmi-1 oncoprotein is overexpressed in human colorectal cancer and correlates with the reduced p16INK4a/p14ARF proteins. Cancer Lett 203(2):217–224

    Article  CAS  PubMed  Google Scholar 

  126. Klug J et al (2000) Uteroglobin/Clara cell 10-kDa family of proteins: nomenclature committee report. Ann NY Acad Sci 923:348–354

    Article  CAS  PubMed  Google Scholar 

  127. Ni J et al (2000) All human genes of the uteroglobin family are localized on chromosome 11q12.2 and form a dense cluster. Ann NY Acad Sci 923:25–42

    Article  CAS  PubMed  Google Scholar 

  128. Watson MA, Fleming TP (1994) Isolation of differentially expressed sequence tags from human breast cancer. Cancer Res 54(17):4598–4602

    CAS  PubMed  Google Scholar 

  129. Watson MA et al (1998) Structure and transcriptional regulation of the human mammaglobin gene, a breast cancer associated member of the uteroglobin gene family localized to chromosome 11q13. Oncogene 16(6):817–824

    Article  CAS  PubMed  Google Scholar 

  130. Tassi RA et al (2008) Mammaglobin B expression in human endometrial cancer. Int J Gynecol Cancer 18(5):1090–1096

    Article  CAS  PubMed  Google Scholar 

  131. Watson MA, Fleming TP (1996) Mammaglobin, a mammary-specific member of the uteroglobin gene family, is overexpressed in human breast cancer. Cancer Res 56(4):860–865

    CAS  PubMed  Google Scholar 

  132. Zafrakas M et al (2006) Expression analysis of mammaglobin A (SCGB2A2) and lipophilin B (SCGB1D2) in more than 300 human tumors and matching normal tissues reveals their co-expression in gynecologic malignancies. BMC Cancer 6:88

    Article  PubMed  CAS  Google Scholar 

  133. Nunez-Villar MJ et al (2003) Elevated mammaglobin (h-MAM) expression in breast cancer is associated with clinical and biological features defining a less aggressive tumour phenotype. Breast Cancer Res 5(3):R65–R70

    Article  CAS  PubMed  Google Scholar 

  134. Fleming TP, Watson MA (2000) Mammaglobin, a breast-specific gene, and its utility as a marker for breast cancer. Ann NY Acad Sci 923:78–89

    Article  CAS  PubMed  Google Scholar 

  135. Fanger GR et al (2002) Detection of mammaglobin in the sera of patients with breast cancer. Tumour Biol 23(4):212–221

    Article  CAS  PubMed  Google Scholar 

  136. Zach O et al (1999) Detection of circulating mammary carcinoma cells in the peripheral blood of breast cancer patients via a nested reverse transcriptase polymerase chain reaction assay for mammaglobin mRNA. J Clin Oncol 17(7):2015–2019

    CAS  PubMed  Google Scholar 

  137. Cerveira N et al (2004) Highly sensitive detection of the MGB1 transcript (mammaglobin) in the peripheral blood of breast cancer patients. Int J Cancer 108(4):592–595

    Article  CAS  PubMed  Google Scholar 

  138. Marques AR et al (2009) Detection of human mammaglobin mRNA in serial peripheral blood samples from patients with non-metastatic breast cancer is not predictive of disease recurrence. Breast Cancer Res Treat 114(2):223–232

    Article  CAS  PubMed  Google Scholar 

  139. Mikhitarian K et al (2008) Detection of mammaglobin mRNA in peripheral blood is associated with high grade breast cancer: interim results of a prospective cohort study. BMC Cancer 8:55

    Article  PubMed  CAS  Google Scholar 

  140. Fu M et al (2004) Minireview: Cyclin D1: normal and abnormal functions. Endocrinology 145(12):5439–5447

    Article  CAS  PubMed  Google Scholar 

  141. Butt AJ et al (2005) Downstream targets of growth factor and oestrogen signalling and endocrine resistance: the potential roles of c-Myc, cyclin D1 and cyclin E. Endocr Relat Cancer 12(Suppl 1):S47–S59

    Article  CAS  PubMed  Google Scholar 

  142. Carney WP et al (2004) Monitoring the circulating levels of the HER2/neu oncoprotein in breast cancer. Clin Breast Cancer 5(2):105–116

    Article  CAS  PubMed  Google Scholar 

  143. Apostolaki S et al (2009) Detection of occult HER2 mRNA-positive tumor cells in the peripheral blood of patients with operable breast cancer: evaluation of their prognostic relevance. Breast Cancer Res Treat 117(3):525–534

    Article  PubMed  Google Scholar 

  144. Ambros V (2004) The functions of animal microRNAs. Nature 431(7006):350–355

    Article  CAS  PubMed  Google Scholar 

  145. Hennessy E, O’Driscoll L (2008) Molecular medicine of microRNAs: structure, function and implications for diabetes. Expert Rev Mol Med 10:e24

    Article  PubMed  Google Scholar 

  146. Gartel A, Kandel E (2008) miRNAs: Little known mediators of oncogenesis. Semin Cancer Biol 18(2):103–110

    Article  CAS  PubMed  Google Scholar 

  147. Lawrie C et al (2008) Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol 141(5):672–675

    Article  PubMed  Google Scholar 

  148. Mitchell P et al (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 105(30):10513–10518

    Article  CAS  PubMed  Google Scholar 

  149. Chen X et al (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18(10):997–1006

    Article  CAS  PubMed  Google Scholar 

  150. Taylor D, Gercel-Taylor C (2008) MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 110(1):13–21

    Article  CAS  PubMed  Google Scholar 

  151. Heneghan H et al (2010) Circulating microRNAs as novel minimally invasive biomarkers for breast cancer. Ann Surg 251(3):499–505

    Article  PubMed  Google Scholar 

  152. Duffy M (2005) Predictive markers in breast and other cancers: a review. Clin Chem 51(3):494–503

    Article  CAS  PubMed  Google Scholar 

  153. Gasparini G et al (2006) Is tailored therapy feasible in oncology? Crit Rev Oncol Hematol 57(1):79–101

    Article  PubMed  Google Scholar 

  154. Hayes D (2005) Prognostic and predictive factors for breast cancer: translating technology to oncology. J Clin Oncol 23(8):1596–1597

    Article  PubMed  Google Scholar 

  155. McShane L et al (2005) Reporting recommendations for tumor marker prognostic studies. J Clin Oncol 23(36):9067–9072

    Article  PubMed  Google Scholar 

  156. Barker AD et al (2009) I-SPY 2: an adaptive breast cancer trial design in the setting of neoadjuvant chemotherapy. Clin Pharmacol Ther 86(1):97–100

    Article  CAS  PubMed  Google Scholar 

  157. Pepe MS et al (2001) Phases of biomarker development for early detection of cancer. J Natl Cancer Inst 93(14):1054–1061

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Science Foundation Ireland, Strategic Research Cluster award to Molecular Therapeutics for Cancer Ireland (award 08/SRC/B1410) for funding associated with preparation of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorraine O’Driscoll.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friel, A.M., Corcoran, C., Crown, J. et al. Relevance of circulating tumor cells, extracellular nucleic acids, and exosomes in breast cancer. Breast Cancer Res Treat 123, 613–625 (2010). https://doi.org/10.1007/s10549-010-0980-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-010-0980-2

Keywords

Navigation