Skip to main content

Advertisement

Log in

The small heat shock protein HspB2 is a novel anti-apoptotic protein that inhibits apical caspase activation in the extrinsic apoptotic pathway

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Members of the conserved small heat shock protein (sHSP) family, such as αB-crystallin and Hsp27, are constitutively expressed in diverse malignancies and have been linked to several hallmark features of cancer including apoptosis resistance. In contrast, the sHSP HspB2/MKBP, which shares an intergenic promoter with αB-crystallin, was discovered as a chaperone of the myotonic dystrophy protein kinase and has not been previously implicated in apoptosis regulation. Here we describe a new function for HspB2 as a novel inhibitor of apical caspase activation in the extrinsic apoptotic pathway. Specifically, we demonstrate that HspB2 is expressed in a subset of human breast cancer cell lines and that ectopic expression of HspB2 in breast cancer cells confers resistance to apoptosis induced by both TRAIL and TNF-α. We also show that HspB2 inhibits the extrinsic apoptotic pathway by suppressing apical caspases-8 and 10 activation, thereby blocking downstream apoptotic events, such as Bid cleavage and caspase-3 activation. Consistent with these in vitro effects, HspB2 attenuates the anti-tumor activity of TRAIL in an orthotopic xenograft model of breast cancer. Collectively, our results reveal a novel function of HspB2 as an anti-apoptotic protein that negatively regulates apical caspase activation in the extrinsic apoptotic pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Thompson CB (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267:1456–1462. doi:10.1126/science.7878464

    Article  CAS  PubMed  Google Scholar 

  2. Hanahan D, Weinberg RA (2002) The hallmarks of cancer. Cell 100:57–70. doi:10.1016/S0092-8674(00)81683-9

    Article  Google Scholar 

  3. Johnstone RW, Ruefli AA, Lowe SW (2002) Apoptosis: a link between cancer genetics and chemotherapy. Cell 108:153–164. doi:10.1016/S0092-8674(02)00625-6

    Article  CAS  PubMed  Google Scholar 

  4. Ashkenazi A, Herbst RS (2008) To kill a tumor cell: the potential of proapoptotic receptor agonists. J Clin Invest 118:1979–1990. doi:10.1172/JCI34359

    Article  CAS  PubMed  Google Scholar 

  5. Boatright KM, Renatus M, Scott FL et al (2003) A unified model for apical caspase activation. Molecular Cell 11:529–541. doi:10.1016/S1097-2765(03)00051-0

    Article  CAS  PubMed  Google Scholar 

  6. Kischkel FC, Lawrence DA, Tinel A et al (2001) Death receptor recruitment of endogenous caspase-10 and apoptosis initiation in the absence of caspase-8. J Biol Chem 276:46639–46646. doi:10.1074/jbc.M105102200

    Article  CAS  PubMed  Google Scholar 

  7. Sprick MR, Weigand MA, Rieser E et al (2000) FADD/MORT1 and caspase-8 are recruited to TRAIL receptors 1 and 2 and are essential for apoptosis mediated by TRAIL receptor 2. Immunity 12:599–609. doi:10.1016/S1074-7613(00)80211-3

    Article  CAS  PubMed  Google Scholar 

  8. Li H, Zhu H, Xu CJ, Yuan J (1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94:491–501. doi:10.1016/S0092-8674(00)81590-1

    Article  CAS  PubMed  Google Scholar 

  9. Scaffidi C, Fulda S, Srinivasan A et al (1998) Two CD95 (APO-1/Fas) signaling pathways. EMBO J 17:1675–1687. doi:10.1093/emboj/17.6.1675

    Article  CAS  PubMed  Google Scholar 

  10. Srinivasula SM, Ahmad M, Fernandes-Alnemri T, Alnemri ES (1998) Autoactivation of procaspase-9 by Apaf-1-mediated oligomerization. Mol Cell 1:949–957. doi:10.1016/S1097-2765(00)80095-7

    Article  CAS  PubMed  Google Scholar 

  11. Burns TF, El-Deiry WS (2001) Identification of inhibitors of TRAIL-induced death (ITIDs) in the TRAIL-sensitive colon carcinoma cell line SW480 using a genetic approach. J Biol Chem 276:37879–37886. doi:10.1074/jbc.M103516200

    CAS  PubMed  Google Scholar 

  12. Fisher MJ, Virmani AK, Wu L et al (2001) Nucleotide substitution in the ectodomain of trail receptor DR4 is associated with lung cancer and head and neck cancer. Clin Cancer Res 7:1688–1697

    CAS  PubMed  Google Scholar 

  13. Fulda S, Meyer E, Debatin KM (2002) Inhibition of TRAIL-induced apoptosis by Bcl-2 overexpression. Oncogene 21:2283–2294. doi:10.1038/sj/onc/1205258

    Article  CAS  PubMed  Google Scholar 

  14. LeBlanc H, Lawrence D, Varfolomeev E et al (2002) Tumor-cell resistance to death receptor–induced apoptosis through mutational inactivation of the proapoptotic Bcl-2 homolog Bax. Nat Med 8:274–281. doi:10.1038/nm0302-274

    Article  CAS  PubMed  Google Scholar 

  15. Lu M, Strohecker A, Chen F et al (2008) Aspirin sensitizes cancer cells to TRAIL-induced apoptosis by reducing survivin levels. Clin Cancer Res 14:3168–3176. doi:10.1158/1078-0432.CCR-07-4362

    Article  CAS  PubMed  Google Scholar 

  16. Pai SI, Wu GS, Ozoren N et al (1998) Rare loss-of-function mutation of a death receptor gene in head and neck cancer. Cancer Res 58:3513–3518

    CAS  PubMed  Google Scholar 

  17. Teitz T, Wei T, Valentine MB et al (2000) Caspase 8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN. Nat Med 6:529–535. doi:10.1038/75007

    Article  CAS  PubMed  Google Scholar 

  18. Yoshida T, Zhang Y, Rivera Rosado LA, Zhang B (2009) Repeated treatment with subtoxic doses of TRAIL induces resistance to apoptosis through its death receptors in MDA-MB-231 breast cancer cells. Mol Cancer Res 7:1835–1844. doi:10.1158/1541-7786.MCR-09-0244

    Google Scholar 

  19. Kamradt MC, Lu M, Werner ME et al (2005) The small heat shock protein αB-crystallin is a novel inhibitor of TRAIL-induced apoptosis that suppresses the activation of caspase-3. J Biol Chem 280:11059–11066. doi:10.1074/jbc.M413382200

    Article  CAS  PubMed  Google Scholar 

  20. Parcellier A, Schmitt E, Brunet M et al (2005) Small heat shock proteins HSP27 and alphaB-crystallin: cytoprotective and oncogenic functions. Antioxid Redox Signal 7:404–413. doi:10.1089/ars.2005.7.404

    Article  CAS  PubMed  Google Scholar 

  21. Iwaki A, Nagano T, Nakagawa M, Iwaki T, Fukumaki Y (1997) Identification and characterization of the gene encoding a new member of the α-crystallin/small hsp family, closely linked to the αB-crystallin gene in a head-to-head manner. Genomics 45:386–394. doi:10.1006/geno.1997.4956

    Article  CAS  PubMed  Google Scholar 

  22. Swamynathan SK, Piatigorsky J (2002) Orientation-dependent influence of an intergenic enhancer on the promoter activity of the divergently transcribed mouse Shsp/alpha B-crystallin and Mkbp/HspB2 genes. J Biol Chem 277:49700–49706. doi:10.1074/jbc.M209700200

    Article  CAS  PubMed  Google Scholar 

  23. Suzuki A, Sugiyama Y, Hayashi Y et al (1998) MKBP, a novel member of the small heat shock protein family, binds and activates the myotonic dystrophy protein kinase. J Cell Biol 140:1113–1124

    Article  CAS  PubMed  Google Scholar 

  24. Sugiyama Y, Suzuki A, Kishikawa M et al (2000) Muscle develops a specific form of small heat shock protein complex composed of MKBP/HSPB2 and HSPB3 during myogenic differentiation. J Biol Chem 275:1095–1104. doi:10.1074/jbc.275.2.1095

    Article  CAS  PubMed  Google Scholar 

  25. Nakagawa M, Tsujimoto N, Nakagawa H et al (2001) Association of HSPB2, a member of the small heat shock protein family, with mitochondria. Exp Cell Res 271:161–168. doi:10.1006/excr.2001.5362

    Article  CAS  PubMed  Google Scholar 

  26. Kamradt MC, Chen F, Cryns VL (2001) The small heat shock protein αB-crystallin negatively regulates cytochrome c- and caspase-8-dependent activation of caspase-3 by inhibiting its autoproteolytic maturation. J Biol Chem 276:16059–16063. doi:10.1074/jbc.C100107200

    Article  CAS  PubMed  Google Scholar 

  27. Byun Y, Chen F, Chang R et al (2001) Caspase cleavage of vimentin disrupts intermediate filaments and promotes apoptosis. Cell Death Differ 8:443–450

    Article  CAS  PubMed  Google Scholar 

  28. Hsu H, Shu H-B, Pan M-P, Goeddel DV (1996) TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor-1 signal transduction pathways. Cell 84:299–308. doi:10.1016/S0092-8674(00)80984-8

    Article  CAS  PubMed  Google Scholar 

  29. Chen F, Arseven OK, Cryns VL (2004) Proteolysis of the mismatch repair protein MLH1 by caspase-3 promotes DNA damage-induced apoptosis. J Biol Chem 279:27542–27548. doi:10.1074/jbc.M400971200

    Article  CAS  PubMed  Google Scholar 

  30. Kamradt MC, Chen F, Sam S, Cryns VL (2002) The small heat shock protein αB-crystallin negatively regulates apoptosis during myogenic differentiation by inhibiting caspase-3 activation. J Biol Chem 277:38731–38736. doi:10.1074/jbc.M201770200

    Article  CAS  PubMed  Google Scholar 

  31. Stegh AH, Kesari S, Mahoney JE et al (2008) Bcl2L12-mediated inhibition of effector caspase-3 and caspase-7 via distinct mechanisms in glioblastoma. Proc Natl Acad Sci USA 105:10703–10708. doi:10.1073/pnas.0712034105

    Article  CAS  PubMed  Google Scholar 

  32. Mao YW, Liu JP, Xiang H, Li DW (2004) Human αA- and αB-crystallins bind to Bax and Bcl-X(S) to sequester their translocation during staurosporine-induced apoptosis. Cell Death Differ 11:512–526. doi:10.1038/sj.cdd.4401384

    Article  CAS  PubMed  Google Scholar 

  33. Mehlen P, Kretz-Remy C, Preville X, Arrigo AP (1996) Human hsp27, Drosophila hsp27 and human αB-crystallin expression-mediated increase in glutathione is essential for the protective activity of these proteins against TNFα-induced cell death. EMBO J 1996(15):2695–2706

    Google Scholar 

  34. Liu S, Li J, Tao Y, Xiao X (2007) Small heat shock protein αB-crystallin binds to p53 to sequester its translocation to mitochondria during hydrogen peroxide-induced apoptosis. Biochem Biophys Res Commun 354:109–114. doi:10.1016/j.bbrc.2006.12.152

    Article  CAS  PubMed  Google Scholar 

  35. Pandey P, Farber R, Nakazawa A et al (2000) Hsp27 functions as a negative regulator of cytochrome c-dependent activation of procaspase-3. Oncogene 19:1975–1981

    Article  CAS  PubMed  Google Scholar 

  36. Bruey JM, Ducasse C, Bonniaud P et al (2000) Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat Cell Biol 2:645–652. doi:10.1038/35023595

    Article  CAS  PubMed  Google Scholar 

  37. Chelouche-Lev D, Kluger HM, Berger AJ, Rimm DL, Price JE (2004) αB-crystallin as a marker of lymph node involvement in breast carcinoma. Cancer 100:2543–2548. doi:10.1002/cncr.20304

    Article  CAS  PubMed  Google Scholar 

  38. Cherneva R, Petrov D, Georgiev O et al. (2010) Expression profile of the small heat-shock protein αB-crystallin in operated-on non-small-cell lung cancer patients: clinical implication. Eur J Cardiothorac Surg 37:44–50. doi: 10.1016/j.ejcts.2009.06.038

    Google Scholar 

  39. Moyano JV, Evans JR, Chen F et al (2006) αB-Crystallin is a novel oncoprotein that predicts poor clinical outcome in breast cancer. J Clin Invest 116:261–270. doi:10.1172/JCI25888

    Article  CAS  PubMed  Google Scholar 

  40. Pinder SE, Balsitis M, Ellis IO (1994) The expression of alpha B-crystallin in epithelial tumours: a useful tumour marker? J Pathol 174:209–215

    Article  CAS  PubMed  Google Scholar 

  41. Ivanov O, Chen F, Wiley EL et al (2008) αB-crystallin is a novel predictor of resistance to neoadjuvant chemotherapy in breast cancer. Breast Cancer Res Treat 111:411–417. doi:10.1007/s10549-007-9796-0

    Article  CAS  PubMed  Google Scholar 

  42. Sitterding SM, Wiseman WR, Schiller CL et al (2008) αB-crystallin: a novel marker of invasive basal-like and metaplastic breast carcinomas. Ann Diagn Pathol 12:33–40. doi:10.1016/j.anndiagpath.2007.02.004

    Article  PubMed  Google Scholar 

  43. Bubendorf L, Kolmer M, Kononen J et al (1999) Hormone therapy failure in human prostate cancer: analysis by complementary DNA and tissue microarrays. J Natl Cancer Institute 91:1758–1764. doi:10.1093/jnci/91.20.1758

    Article  CAS  Google Scholar 

  44. Cornford PA, Dodson AR, Parsons KF et al (2000) Heat shock protein expression independently predicts clinical outcome in prostate cancer. Cancer Res 60:7099–7105

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are indebted to Drs. Honglin Li (Northwestern University) and Marcus Peter (University of Chicago) for providing reagents. These studies were supported by Department of Defense CDMRP grant DAMD17-03-1-0426 (VLC), NIH grants R01CA097198 (VLC) and T32DK007169 (SO), and by the Breast Cancer Research Foundation (VLC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent L. Cryns.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oshita, S.E., Chen, F., Kwan, T. et al. The small heat shock protein HspB2 is a novel anti-apoptotic protein that inhibits apical caspase activation in the extrinsic apoptotic pathway. Breast Cancer Res Treat 124, 307–315 (2010). https://doi.org/10.1007/s10549-010-0735-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-010-0735-0

Keywords

Navigation