Skip to main content

Advertisement

Log in

The proteins FABP7 and OATP2 are associated with the basal phenotype and patient outcome in human breast cancer

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

The basal-like or basal phenotype (BP) class of breast cancers have recently attracted attention as a poor prognostic form of breast cancer. However, BP appears to encompass biologically and clinically heterogeneous tumours, resulting in a lack of consensus definition of BP. We analysed 48,000 gene transcripts in 132 invasive breast carcinomas to identify two novel genes (OATP2 and FABP7) significantly associated with BP [defined by cytokeratin (CK)5/6 and/or CK14 positivity]. Using a series of invasive breast carcinoma cases (n = 899), prepared as tissue microarrays, we assessed OATP2 and FABP7 protein expression using immunohistochemistry to investigate associations with clinicopathological variables, patients’ outcome and ability to refine BP classification. A total of 7.9 and 15.6% cases were OATP2 and FABP7 positive, respectively. OATP2 was associated with tumours of high histological grade (p < 0.01), ER and PgR negativity (p < 0.01) and shorter breast cancer–specific survival (p = 0.04). FABP7 expression was associated with lower lymph node stage (p < 0.01), ER and PgR negativity (p < 0.01). BP tumours which were FABP7 positive had a significantly longer BCSS (p = 0.05) and disease-free survival (p = 0.01) compared with FABP7 negative basal tumours (p < 0.01). OATP2 positive tumours were associated with adverse survival and increased risk of early recurrence. This study confirms the biological and clinical heterogeneity of the BP in breast cancer. We have identified a novel subgroup of basal tumours showing FABP7 expression that have significantly better clinical outcome. Further studies analysing the role of FABP7 are therefore warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO, Botstein D (2000) Molecular portraits of human breast tumours. Nature 406:747–752

    Article  CAS  PubMed  Google Scholar 

  2. Zhao H, Langerod A, Ji Y, Nowels KW, Nesland JM, Tibshirani R, Bukholm IK, Karesen R, Botstein D, Borresen-Dale AL, Jeffrey SS (2004) Different gene expression patterns in invasive lobular and ductal carcinomas of the breast. Mol Biol Cell 15:2523–2536

    Article  CAS  PubMed  Google Scholar 

  3. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Eystein Lonning P, Borresen-Dale AL (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98:10869–10874

    Article  CAS  PubMed  Google Scholar 

  4. Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, Deng S, Johnsen H, Pesich R, Geisler S, Demeter J, Perou CM, Lonning PE, Brown PO, Borresen-Dale AL, Botstein D (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 100:8418–8423

    Article  CAS  PubMed  Google Scholar 

  5. Hu Z, Fan C, Oh DS, Marron JS, He X, Qaqish BF, Livasy C, Carey LA, Reynolds E, Dressler L, Nobel A, Parker J, Ewend MG, Sawyer LR, Wu J, Liu Y, Nanda R, Tretiakova M, Ruiz Orrico A, Dreher D, Palazzo JP, Perreard L, Nelson E, Mone M, Hansen H, Mullins M, Quackenbush JF, Ellis MJ, Olopade OI, Bernard PS, Perou CM (2006) The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics 7:96

    Article  PubMed  CAS  Google Scholar 

  6. Sotiriou C, Neo SY, McShane LM, Korn EL, Long PM, Jazaeri A, Martiat P, Fox SB, Harris AL, Liu ET (2003) Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc Natl Acad Sci USA 100:10393–10398

    Article  CAS  PubMed  Google Scholar 

  7. Murad TM (1971) A proposed histochemical and electron microscopic classification of human breast cancer according to cell of origin. Cancer 27:288–299

    Article  PubMed  CAS  Google Scholar 

  8. Moll R, Franke WW, Schiller DL, Geiger B, Krepler R (1982) The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell 31:11–24

    Article  CAS  PubMed  Google Scholar 

  9. Nagle RB, Bocker W, Davis JR, Heid HW, Kaufmann M, Lucas DO, Jarasch ED (1986) Characterization of breast carcinomas by two monoclonal antibodies distinguishing myoepithelial from luminal epithelial cells. J Histochem Cytochem 34:869–881

    CAS  PubMed  Google Scholar 

  10. Altmannsberger M, Dirk T, Droese M, Weber K, Osborn M (1986) Keratin polypeptide distribution in benign and malignant breast tumors: subdivision of ductal carcinomas using monoclonal antibodies. Virchows Arch B Cell Pathol Incl Mol Pathol 51:265–275

    Article  CAS  PubMed  Google Scholar 

  11. Dairkee SH, Ljung BM, Smith H, Hackett A (1987) Immunolocalization of a human basal epithelium specific keratin in benign and malignant breast disease. Breast Cancer Res Treat 10:11–20

    Article  CAS  PubMed  Google Scholar 

  12. Rakha E, Putti TC, El-Rehim DMA et al (2006) Morphological and immunophenotypic analysis of breast carcinomas with basal and myoepithelial differentiation. J Pathol 208:495–506

    Article  CAS  PubMed  Google Scholar 

  13. van de Rijn M, Perou CM, Tibshirani R et al (2002) Expression of cytokeratins 17 and 5 identifies a group of breast carcinomas with poor clinical outcome. Am J Pathol 161:1991–1996

    PubMed  Google Scholar 

  14. Rakha EA, Reis-Filho JS, Ellis IO (2008) Basal-like breast cancer: a critical review. J Clin Oncol 26:2568–2581

    Article  PubMed  Google Scholar 

  15. Jones C, Nonni AV, Fulford L, Merrett S, Chaggar R, Eusebi V, Lakhani SR (2001) CGH analysis of ductal carcinoma of the breast with basaloid/myoepithelial cell differentiation. Br J Cancer 85:422–427

    Article  CAS  PubMed  Google Scholar 

  16. Makretsov NA, Huntsman DG, Nielsen TO, Yorida E, Peacock M, Cheang MC, Dunn SE, Hayes M, van de Rijn M, Bajdik C, Gilks CB (2004) Hierarchical clustering analysis of tissue microarray immunostaining data identifies prognostically significant groups of breast carcinoma. Clin Cancer Res 10:6143–6151

    Article  CAS  PubMed  Google Scholar 

  17. Kreike B, Horlings H, Weigelt B, Bartelink H, Van de Vijver MJ (2007) Gene expression profiling and histopathological characterization of triple-negative/basal-like breast carcinomas. Breast Cancer Res 9:R65

    Article  PubMed  CAS  Google Scholar 

  18. Chin SF, Teschendorff AE, Marioni JC, Wang Y, Barbosa-Morais NL, Thorne NP, Costa JL, Pinder SE, van de Wiel MA, Green AR, Ellis IO, Porter PL, Tavare S, Brenton JD, Ylstra B, Caldas C (2007) High-resolution array-CGH and expression profiling identifies a novel genomic subtype of ER negative breast cancer. Genome Biol 8:R215

    Article  PubMed  CAS  Google Scholar 

  19. Teschendorff AE, Caldas C (2008) A robust classifier of high predictive value to identify good prognosis patients in ER-negative breast cancer. Breast Cancer Res 10:R73

    Article  PubMed  CAS  Google Scholar 

  20. Bauer KR, Cress RD, Parise CA, Caggiano V (2007) Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype: a population-based study from the California cancer Registry. Cancer 109:1721–1728

    Article  PubMed  Google Scholar 

  21. Rakha EA, Green AR et al (2007) Prognostic markers in triple-negative breast cancer. Cancer 109:25–32

    Article  CAS  PubMed  Google Scholar 

  22. Rakha E (2008) Are triple-negative and basal-like breast cancer synonymous? Clin Cancer Res 14:618

    Article  PubMed  Google Scholar 

  23. Tischkowitz M, Brunet JS, Bégin LR, David G, Huntsman DG, Akslen LA, Foulkes T (2007) Use of immunohistochemical markers can refine prognosis in triple negative breast cancer. BMC Cancer 7:134

    Google Scholar 

  24. Rakha EA, Putti C, Abd El-Rehim DM, Paish C, Green AR, Powe DG, Lee AH, Robertson JF, Ellis IO (2006) Morphological and immunophenotypic analysis of breast carcinomas with basal and myoepithelial differentiation. J Pathol 208:495–506

    Article  CAS  PubMed  Google Scholar 

  25. Laakso M, Loman N, Borg Å, Isola J (2005) Cytokeratin 5/14-positive breast cancer: true basal phenotype confined to BRCA1 tumors. Mod Pathol 18:1321–1328

    Article  CAS  PubMed  Google Scholar 

  26. Potemski P, Kusinska R, Watala C, Pluciennik E, Bednarek AK, Kordek R (2005) Prognostic relevance of basal cytokeratin expression in operable breast cancer. Oncology 69:478–485

    Article  PubMed  CAS  Google Scholar 

  27. Jumppanen M, Gruvberger-Saal S, Kauraniemi P, Tanner M et al (2007) Basal-like phenotype is not associated with patient survival in estrogen-receptor-negative breast cancers. Breast Cancer Res 9:R16

    Article  PubMed  CAS  Google Scholar 

  28. Ellis IO, Galea M, Broughton N, Locker A, Blamey RW, Elston CW (1992) Pathological prognostic factors in breast cancer. II. Histological type. Relationship with survival in a large study with long-term follow-up. Histopathology 20:479–489

    Article  CAS  PubMed  Google Scholar 

  29. Elston CW, Ellis IO (1991) Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology 19:403–410

    Article  CAS  PubMed  Google Scholar 

  30. Galea MH, Blamey RW, Elston CE, Ellis IO (1992) The Nottingham Prognostic Index in primary breast cancer. Breast Cancer Res Treat 22:207–219

    Article  CAS  PubMed  Google Scholar 

  31. Madjd Z, Pinder SE, Paish C, Ellis IO, Carmichael J, Durrant LG (2003) Loss of CD59 expression in breast tumours correlates with poor survival. J Pathol 200:633–639

    Article  CAS  PubMed  Google Scholar 

  32. El-Rehim DMA, Ball G, Pinder SE, Rakha EA, Paish C, Robertson JFR, MacMillan D, Blamey RW, Ellis IO (2005) High throughput protein expression analysis using Tissue Microarray Technology of a large well characterised series identifies biologically distinct classes of breast cancer confirming recent cDNA expression analyses. Int J Cancer 116:340–350

    Article  CAS  Google Scholar 

  33. El-Rehim DMA, Pinder SE, Paish CE, Bell JA, Rampaul RS, Blamey RW, Robertson JF, Nicholson RI, Ellis IO (2004) Expression and co-expression of the members of the epidermal growth factor receptor (EGFR) family in invasive breast carcinoma. Br J Cancer 91:1532–1542

    Article  CAS  Google Scholar 

  34. Rakha EA, El-Rehim DA, Paish C, Green AR, Lee AH, Robertson JF, Blamey RW, Macmillan D, Ellis IO (2006) Basal phenotype identifies a poor prognostic subgroup of breast cancer of clinical importance. Eur J Cancer 42:3149–3156

    Article  CAS  PubMed  Google Scholar 

  35. Naderi A, Teschendorff AE, Barbosa-Morais NL, Pinder SE, Green AR, Powe DG, Robertson JF, Aparicio S, Ellis IO, Brenton JD, Caldas C (2006) A gene-expression signature to predict survival in breast cancer across independent data sets. Oncogene 26:1507–1516

    Article  PubMed  CAS  Google Scholar 

  36. Git A, Spiteri I, Blenkiron C, Dunning MJ, Pole JC, Chin SF, Wang Y, Smith J, Livesey FJ, Caldas C (2008) PMC42, a breast progenitor cancer cell line, has normal-like mRNA and microRNA transcriptomes. Breast Cancer Res 10:R54

    Article  PubMed  CAS  Google Scholar 

  37. Dunning MJ, Smith ML, Ritchie ME, Tavare S (2007) Bead array: R classes and methods for Illumina bead-based data. Bioinformatics 23:2183–2184

    Article  CAS  PubMed  Google Scholar 

  38. Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323:533–536

    Article  Google Scholar 

  39. Lancashire LJ, Powe DG, Reis-Filho JS, Rakha E, Lemetre C, Weigelt B, Abdel-Fatah TM, Green AR, Mukta R, Blamey R, Paish EC, Rees RC, Ellis IO, Ball GR (2009) A validated gene expression profile for detecting clinical outcome in breast cancer using artificial neural networks. Breast Cancer Res Treat

  40. Green AR, Burney C, Granger CJ, Paish EC, El-Sheikh S, Rakha EA, Powe DG, Macmillan RD, Ellis IO, Stylianou E (2008) The prognostic significance of steroid receptor co-regulators in breast cancer: co-repressor NCOR2/SMRT is an independent indicator of poor outcome. Breast Cancer Res Treat 110:427–437

    Article  CAS  PubMed  Google Scholar 

  41. Rakha E, El-Rehim DA, Paish C et al (2006) Basal phenotype identifies a poor prognostic subgroup of breast cancer of clinical importance. Eur J Cancer 42:3149–3156

    Article  CAS  PubMed  Google Scholar 

  42. Grube M, Reuther S, Meyer zu Schwabedissen H, Köck K, Draber K, Ritter CA, Fusch C, Jedlitschky G, Kroemer HK (2007) Organic anion transporting polypeptide 2B1 and breast cancer resistance protein interact in the transepithelial transport of steroid sulfates in human placenta drug metabolism and disposition 35:30–34

  43. Ejendal KF, Hrycyna CA (2002) Multidrug resistance and cancer: the role of the human ABC transporter ABCG2. Curr Protein Pept Sci 3:503–511

    Article  CAS  PubMed  Google Scholar 

  44. Chmurzyñska A (2006) The multigene family of fatty acid-binding proteins (FABPs): function, structure and polymorphism. J Appl Genet 47:39–48

    PubMed  Google Scholar 

  45. G Kaloshi, Mokhtari K, Carpentier C, Taillibert S et al (2007) FABP7 expression in glioblastomas: relation to prognosis, invasion and EGFR status. J Neurooncol 84:245–248

    Article  Google Scholar 

  46. Liang Y, Abraham BA, Nicholas MK, Gupta N (2005) Id4 and FABP7 are preferentially expressed in cells with astrocytic features in oligodendrogliomas and oligoastrocytomas. BMC Clin Pathol 5

  47. Wang M, Liu YE, Ni J, Aygun B, Goldberg ID, Shi EY (2000) Induction of mammary differentiation by mammary-derived growth inhibitor-related gene that interacts with an ω-3 fatty acid on growth inhibition of breast cancer cells. Cancer Res 60:6482–6487

    CAS  PubMed  Google Scholar 

  48. Nielsen TO, Hsu FD, Jensen K, Cheang M, Karaca G, Hu Z, Hernandez-Boussard T, Livasy C, Cowan D, Dressler L, Akslen LA, Ragaz J, Gown AM, Gilks CB, van de Rijn M, Perou CM (2004) Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res 10:5367–5374

    Article  CAS  PubMed  Google Scholar 

  49. Kim MJ, Ro JY, Ahn SH, Kim HH, Kim SB, Gong G (2006) Clinicopathologic significance of the basal-like subtype of breast cancer: a comparison with hormone receptor and HER2/neu-overexpressing phenotypes. Hum Pathol 37:117–126

    Article  CAS  Google Scholar 

  50. Rodriguez-Pinilla SM, Honrado E, Hardisson D, Calero F, Benitez J, Palacios J (2006) Prognostic significance of basal-like phenotype and fascin expression in node-negative invasive breast carcinomas. Clin Cancer Res 12:1533–1539

    Article  CAS  PubMed  Google Scholar 

  51. Kreike B, van Kouwenhove M, Horlings H, Weigelt B, Peterse H, Bartelink H, van de Vijver M (2007) Gene expression profiling and histopathological characterization of triple-negative/basal-like breast carcinomas. Breast Cancer Res 9:R65

    Article  PubMed  CAS  Google Scholar 

  52. Teschendorff AE, Miremadi A, Pinder SE, Ellis IO, Caldas C (2007) An immune response gene expression module identifies a good prognosis subtype in estrogen receptor negative breast cancer. Genome Biol 8:R157

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Breast Cancer Campaign.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Green.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Rakha, E.A., Ball, G.R. et al. The proteins FABP7 and OATP2 are associated with the basal phenotype and patient outcome in human breast cancer. Breast Cancer Res Treat 121, 41–51 (2010). https://doi.org/10.1007/s10549-009-0450-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-009-0450-x

Keywords

Navigation