Skip to main content

Advertisement

Log in

Combined therapeutic effect of a monoclonal anti-idiotype tumor vaccine against NeuGc-containing gangliosides with chemotherapy in a breast carcinoma model

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Anti-idiotypic monoclonal antibodies (mAb) have been evaluated for actively induced immunotherapy with encouraging results. However, rational combination of cancer vaccines with chemotherapy may improve the therapeutic efficacy of these two approaches used separately. The main objective of this study was to evaluate the antitumor effect of the co-administration of 1E10 (Racotumomab), a monoclonal anti-idiotype tumor vaccine against an IgM mAb, named P3 that reacts specifically with NeuGc-containing gangliosides and low-dose Cyclophosphamide in a mammary carcinoma model. F3II tumor-bearing mice were immunized subcutaneously with 100 μg of 1E10 mAb in Alum or with 150 mg/m2 of Cyclophosphamide intravenously 7 days after the tumor inoculation. While a limited antitumor effect was induced by a single 1E10 mAb immunization; its co-administration with low-dose Cyclophosphamide reduced significantly the F3II mammary carcinoma growth. That response was comparable with the co-administration of the standard high-dose chemotherapy for breast cancer based on 60 mg/m2 of Doxorubicin and 600 mg/m2 of Cyclophosphamide, without toxicity signs. Combinatorial chemo-immunotherapy promoted the CD8+ lymphocytes tumor infiltration and enhanced tumor apoptosis. Furthermore, 1E10 mAb immunization potentiated the antiangiogenic effect of low-dose Cyclophosphamide. Additionally, splenic myeloid cells Gr1+/CD11b+ associated with a suppressor phenotype were significantly reduced in F3II tumor-bearing mice immunized with 1E10 mAb alone or in combination with low-dose Cyclophosphamide. This data may provide a rational for chemo-immunotherapy combinations with potential medical implications in breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Ab:

Antibody

Cy:

Cyclophosphamide

CyHi :

600 mg/m2

CyLo :

150 mg/m2

Dox:

Doxorubicin

ELISA:

Enzyme-linked immunosorbent assay

Id:

Idiotype

mAb:

Monoclonal antibody

NeuGc:

Neu-Glycolyl

Treg:

Regulatory T cells

s.c.:

Subcutaneous

i.p.:

Intraperitoneal

i.v.:

Intravenous

References

  1. Montero E, Amador JF, Perez R, Lage A (2000) Tumor-specific immunotherapy based on dominant models of natural tolerance. Med Hypotheses 54:531–536. doi:10.1054/mehy.1999.0892

    Article  CAS  PubMed  Google Scholar 

  2. Bhattacharya-Chatterjee M, Chatterjee SK, Foon KA (2001) The anti-idiotype vaccines for immunotherapy. Curr Opin Mol Ther 3:63–69

    CAS  PubMed  Google Scholar 

  3. Mohanty K, Saha A, Pal S, Mallick P, Chatterjee SK, Foon KA, Bhattacharya-Chatterjee M (2007) Anti-tumor immunity induced by an anti-idiotype antibody mimicking human Her-2/neu. Breast Cancer Res Treat 104:1–11. doi:10.1007/s10549-006-9391-9

    Article  CAS  PubMed  Google Scholar 

  4. Vazquez AM, Perez A, Hernandez AM, Macias A, Alfonso M, Bombino G, Perez R (1998) Syngeneic anti-idiotypic monoclonal antibodies to an anti-NeuGc-containing ganglioside monoclonal antibody. Hybridoma 17:527–534

    Article  CAS  PubMed  Google Scholar 

  5. Vazquez AM, Gabri MR, Hernandez AM, Alonso DF, Beausoleil I, Gomez DE, Perez R (2000) Antitumor properties of an anti-idiotypic monoclonal antibody in relation to N-glycolyl-containing gangliosides. Oncol Rep 7:751–756

    CAS  PubMed  Google Scholar 

  6. Diaz Y, Gonzalez A, Lopez A, Perez R, Vazquez AM, Montero E (2008) Anti-ganglioside anti-idiotypic monoclonal antibody-based cancer vaccine induces apoptosis and antiangiogenic effect in a metastatic lung carcinoma. Cancer Immunol Immunother

  7. Honeychurch J, Glennie MJ, Illidge TM (2005) Cyclophosphamide inhibition of anti-CD40 monoclonal antibody-based therapy of B cell lymphoma is dependent on CD11b+ cells. Cancer Res 65:7493–7501. doi:10.1158/0008-5472.CAN-04-3808

    Article  CAS  PubMed  Google Scholar 

  8. Reece DE, Foon KA, Bhattarcharya-Chatterjee M, Adkins D, Broun ER, Connaghan DG, Dipersio JF, Holland HK, Howard DA, Hale GA et al (2003) Use of the anti-idiotype breast cancer vaccine 11D10 in conjunction with autologous stem cell transplantation in patients with metastatic breast cancer. Clin Breast Cancer 3(Suppl 4):S152–S157. doi:10.3816/CBC.2003.s.005

    Article  PubMed  Google Scholar 

  9. Sinkovics JG, Horvath JC (2006) Evidence accumulating in support of cancer vaccines combined with chemotherapy: a pragmatic review of past and present efforts. Int J Oncol 29:765–777

    CAS  PubMed  Google Scholar 

  10. Hanahan D, Bergers G, Bergsland E (2000) Less is more, regularly: metronomic dosing of cytotoxic drugs can target tumor angiogenesis in mice. J Clin Invest 105:1045–1047. doi:10.1172/JCI9872

    Article  CAS  PubMed  Google Scholar 

  11. Fisher B, Brown AM, Dimitrov NV, Poisson R, Redmond C, Margolese RG, Bowman D, Wolmark N, Wickerham DL, Kardinal CG et al (1990) Two months of doxorubicin-cyclophosphamide with and without interval reinduction therapy compared with 6 months of cyclophosphamide, methotrexate, and fluorouracil in positive-node breast cancer patients with tamoxifen-nonresponsive tumors: results from the National Surgical Adjuvant Breast and Bowel Project B-15. J Clin Oncol 8:1483–1496

    CAS  PubMed  Google Scholar 

  12. Browder T, Butterfield CE, Kraling BM, Shi B, Marshall B, O’Reilly MS, Folkman J (2000) Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res 60:1878–1886

    CAS  PubMed  Google Scholar 

  13. Loeffler M, Kruger JA, Reisfeld RA (2005) Immunostimulatory effects of low-dose cyclophosphamide are controlled by inducible nitric oxide synthase. Cancer Res 65:5027–5030. doi:10.1158/0008-5472.CAN-05-0646

    Article  CAS  PubMed  Google Scholar 

  14. Alonso DF, Farias EF, Urtreger A, Ladeda V, Vidal MC, Bal De Kier Joffe E (1996) Characterization of F3II, a sarcomatoid mammary carcinoma cell line originated from a clonal subpopulation of a mouse adenocarcinoma. J Surg Oncol 62:288–297. doi:10.1002/(SICI)1096-9098(199608)62:4<288::AID-JSO14>3.0.CO;2-1

    Article  CAS  PubMed  Google Scholar 

  15. Alonso DF, Farina HG, Skilton G, Gabri MR, De Lorenzo MS, Gomez DE (1998) Reduction of mouse mammary tumor formation and metastasis by lovastatin, an inhibitor of the mevalonate pathway of cholesterol synthesis. Breast Cancer Res Treat 50:83–93. doi:10.1023/A:1006058409974

    Article  CAS  PubMed  Google Scholar 

  16. Trump BF, Berezesky IK, Chang SH, Phelps PC (1997) The pathways of cell death: oncosis, apoptosis, and necrosis. Toxicol Pathol 25:82–88

    Article  CAS  PubMed  Google Scholar 

  17. Coro RM, Borrajero I (1996) DIGIPAT. Un sistema cubano para morfometría de imágenes. Rev Latinoam Patol 34:9–10

    Google Scholar 

  18. Gabri MR, Menna PL, Scursoni AM, Gomez DE, Alonso DF (1999) Role of tumor-derived granulocyte-macrophage colony-stimulating factor in mice bearing a highly invasive and metastatic mammary carcinoma. Pathobiology 67:180–185. doi:10.1159/000028070

    Article  CAS  PubMed  Google Scholar 

  19. Bronte V, Apolloni E, Cabrelle A, Ronca R, Serafini P, Zamboni P, Restifo NP, Zanovello P (2000) Identification of a CD11b(+)/Gr-1(+)/CD31(+) myeloid progenitor capable of activating or suppressing CD8(+) T cells. Blood 96:3838–3846

    CAS  PubMed  Google Scholar 

  20. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70. doi:10.1016/S0092-8674(00)81683-9

    Article  CAS  PubMed  Google Scholar 

  21. du Manoir JM, Francia G, Man S, Mossoba M, Medin JA, Viloria-Petit A, Hicklin DJ, Emmenegger U, Kerbel RS (2006) Strategies for delaying or treating in vivo acquired resistance to trastuzumab in human breast cancer xenografts. Clin Cancer Res 12:904–916. doi:10.1158/1078-0432.CCR-05-1109

    Article  CAS  PubMed  Google Scholar 

  22. Marquina G, Waki H, Fernandez LE, Kon K, Carr A, Valiente O, Perez R, Ando S (1996) Gangliosides expressed in human breast cancer. Cancer Res 56:5165–5171

    CAS  PubMed  Google Scholar 

  23. Bada A, Casaco Parada A, Arteaga M, Martinez J, Leon A, Santana E, Hernandez O, Orphee R, Gonzalez A, Mesa C et al (2002) Toxicity of a GM3 cancer vaccine in Macaca fascicularis monkey: a 12-month study. Hum Exp Toxicol 21:263–267. doi:10.1191/0960327102ht248oa

    Article  CAS  PubMed  Google Scholar 

  24. Oliva JP, Valdes Z, Casaco A, Pimentel G, Gonzalez J, Alvarez I, Osorio M, Velazco M, Figueroa M, Ortiz R et al (2006) Clinical evidences of GM3 (NeuGc) ganglioside expression in human breast cancer using the 14F7 monoclonal antibody labelled with (99 m)Tc. Breast Cancer Res Treat 96:115–121. doi:10.1007/s10549-005-9064-0

    Article  CAS  PubMed  Google Scholar 

  25. Roque-Navarro L, Chakrabandhu K, de Leon J, Rodriguez S, Toledo C, Carr A, de Acosta CM, Hueber AO, Perez R (2008) Anti-ganglioside antibody-induced tumor cell death by loss of membrane integrity. Mol Cancer Ther 7:2033–2041. doi:10.1158/1535-7163.MCT-08-0222

    Article  CAS  PubMed  Google Scholar 

  26. Lake RA, Robinson BW (2005) Immunotherapy and chemotherapy—a practical partnership. Nat Rev Cancer 5:397–405. doi:10.1038/nrc1613

    Article  CAS  PubMed  Google Scholar 

  27. Taieb J, Chaput N, Schartz N, Roux S, Novault S, Menard C, Ghiringhelli F, Terme M, Carpentier AF, Darrasse-Jeze G et al (2006) Chemoimmunotherapy of tumors: cyclophosphamide synergizes with exosome based vaccines. J Immunol 176:2722–2729

    CAS  PubMed  Google Scholar 

  28. Carter MR, Hornick JL, Lester S, Fletcher CD (2006) Spindle cell (sarcomatoid) carcinoma of the breast: a clinicopathologic and immunohistochemical analysis of 29 cases. Am J Surg Pathol 30:300–309

    PubMed  Google Scholar 

  29. Nowak AK, Lake RA, Robinson BW (2006) Combined chemoimmunotherapy of solid tumours: improving vaccines? Adv Drug Deliv Rev 58:975–990. doi:10.1016/j.addr.2006.04.002

    Article  CAS  PubMed  Google Scholar 

  30. Klement G, Baruchel S, Rak J, Man S, Clark K, Hicklin DJ, Bohlen P, Kerbel RS (2000) Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity. J Clin Invest 105:R15–R24. doi:10.1172/JCI8829

    Article  CAS  PubMed  Google Scholar 

  31. Diaz A, Alfonso M, Alonso R, Saurez G, Troche M, Catala M, Diaz RM, Perez R, Vazquez AM (2003) Immune responses in breast cancer patients immunized with an anti-idiotype antibody mimicking NeuGc-containing gangliosides. Clin Immunol 107:80–89. doi:10.1016/S1521-6616(03)00036-6

    Article  CAS  PubMed  Google Scholar 

  32. Guthmann MD, Castro MA, Cinat G, Venier C, Koliren L, Bitton RJ, Vazquez AM, Fainboim L (2006) Cellular and humoral immune response to N-glycolyl-GM3 elicited by prolonged immunotherapy with an anti-idiotypic vaccine in high-risk and metastatic breast cancer patients. J Immunother 29:215–223. doi:10.1097/01.cji.0000188502.11348.34

    Article  CAS  PubMed  Google Scholar 

  33. Zhou H, Sequeira M, Goad ME, Erickson J, Wong A, Clark E, Dunussi-Joannopoulos K, Li RC, Friedrich S, Hayes LL et al (2001) Efficacy and mechanisms of action of rmB7.2-Ig as an antitumor agent in combination with adriamycin and cytoxan chemotherapy. Clin Immunol 101:303–314. doi:10.1006/clim.2001.5123

    Article  CAS  PubMed  Google Scholar 

  34. Kanwar JR, Kanwar RK, Pandey S, Ching LM, Krissansen GW (2001) Vascular attack by 5, 6-dimethylxanthenone-4-acetic acid combined with B7.1 (CD80)-mediated immunotherapy overcomes immune resistance and leads to the eradication of large tumors and multiple tumor foci. Cancer Res 61:1948–1956

    CAS  PubMed  Google Scholar 

  35. Machiels JP, Reilly RT, Emens LA, Ercolini AM, Lei RY, Weintraub D, Okoye FI, Jaffee EM (2001) Cyclophosphamide, doxorubicin, and paclitaxel enhance the antitumor immune response of granulocyte/macrophage-colony stimulating factor-secreting whole-cell vaccines in HER-2/neu tolerized mice. Cancer Res 61:3689–3697

    CAS  PubMed  Google Scholar 

  36. Eralp Y, Wang X, Wang JP, Maughan MF, Polo JM, Lachman LB (2004) Doxorubicin and paclitaxel enhance the antitumor efficacy of vaccines directed against HER 2/neu in a murine mammary carcinoma model. Breast Cancer Res 6:R275–R283. doi:10.1186/bcr787

    Article  CAS  PubMed  Google Scholar 

  37. Monzavi-Karbassi B, Pashov A, Jousheghany F, Artaud C, Kieber-Emmons T (2006) Evaluating strategies to enhance the anti-tumor immune response to a carbohydrate mimetic peptide vaccine. Int J Mol Med 17:1045–1052

    CAS  PubMed  Google Scholar 

  38. Rice J, Dunn S, Piper K, Buchan SL, Moss PA, Stevenson FK (2006) DNA fusion vaccines induce epitope-specific cytotoxic CD8(+) T cells against human leukemia-associated minor histocompatibility antigens. Cancer Res 66:5436–5442. doi:10.1158/0008-5472.CAN-05-3130

    Article  CAS  PubMed  Google Scholar 

  39. Emens LA, Jaffee EM (2005) Leveraging the activity of tumor vaccines with cytotoxic chemotherapy. Cancer Res 65:8059–8064. doi:10.1158/0008-5472.CAN-05-1797

    Article  CAS  PubMed  Google Scholar 

  40. Montero E, Alonso L, Perez R, Lage A (2007) Interleukin-2 mastering regulation in cancer and autoimmunity. Ann N Y Acad Sci 1107:239–250. doi:10.1196/annals.1381.026

    Article  CAS  PubMed  Google Scholar 

  41. Shojaei F, Ferrara N (2008) Refractoriness to antivascular endothelial growth factor treatment: role of myeloid cells. Cancer Res 68:5501–5504. doi:10.1158/0008-5472.CAN-08-0925

    Article  CAS  PubMed  Google Scholar 

  42. Zhang B, Zhang Y, Bowerman NA, Schietinger A, Fu YX, Kranz DM, Rowley DA, Schreiber H (2008) Equilibrium between host and cancer caused by effector T cells killing tumor stroma. Cancer Res 68:1563–1571. doi:10.1158/0008-5472.CAN-07-5324

    Article  CAS  PubMed  Google Scholar 

  43. Ercolini AM, Ladle BH, Manning EA, Pfannenstiel LW, Armstrong TD, Machiels JP, Bieler JG, Emens LA, Reilly RT, Jaffee EM (2005) Recruitment of latent pools of high-avidity CD8(+) T cells to the antitumor immune response. J Exp Med 201:1591–1602. doi:10.1084/jem.20042167

    Article  CAS  PubMed  Google Scholar 

  44. Kroemer G, Pouyssegur J (2008) Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell 13:472–482. doi:10.1016/j.ccr.2008.05.005

    Article  CAS  PubMed  Google Scholar 

  45. Zitvogel L, Apetoh L, Ghiringhelli F, Andre F, Tesniere A, Kroemer G (2008) The anticancer immune response: indispensable for therapeutic success? J Clin Invest 118:1991–2001. doi:10.1172/JCI35180

    Article  CAS  PubMed  Google Scholar 

  46. Bronte V, Serafini P, Apolloni E, Zanovello P (2001) Tumor-induced immune dysfunctions caused by myeloid suppressor cells. J Immunother 24:431–446

    Article  CAS  PubMed  Google Scholar 

  47. Suzuki E, Kapoor V, Jassar AS, Kaiser LR, Albelda SM (2005) Gemcitabine selectively eliminates splenic Gr-1+/CD11b+ myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin Cancer Res 11:6713–6721. doi:10.1158/1078-0432.CCR-05-0883

    Article  CAS  PubMed  Google Scholar 

  48. Serafini P, Meckel K, Kelso M, Noonan K, Califano J, Koch W, Dolcetti L, Bronte V, Borrello I (2006) Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. J Exp Med 203:2691–2702. doi:10.1084/jem.20061104

    Article  CAS  PubMed  Google Scholar 

  49. Finn OJ (2008) Cancer immunology. N Engl J Med 358:2704–2715. doi:10.1056/NEJMra072739

    Article  CAS  PubMed  Google Scholar 

  50. Finn OJ (2008) Tumor immunology top 10 list. Immunol Rev 222:5–8. doi:10.1111/j.1600-065X.2008.00623.x

    Article  PubMed  Google Scholar 

  51. Rodriguez PC, Gonzalez I, Gonzalez A, Avellanet J, Lopez A, Perez R, Lage A, Montero E (2008) Priming and boosting determinants on the antibody response to an epidermal growth factor-based cancer vaccine. Vaccine 26:4647–4654. doi:10.1016/j.vaccine.2008.07.003

    Article  CAS  PubMed  Google Scholar 

  52. Montero E, Valdes M, Avellanet J, Lopez A, Perez R, Lage A (2009) Chemotherapy induced transient B-cell depletion boosts antibody-forming cells expansion driven by an epidermal growth factor-based cancer vaccine. Vaccine 27:2230–2239. doi:10.1016/j.vaccine.2009.02.018

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Montero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuentes, D., Avellanet, J., Garcia, A. et al. Combined therapeutic effect of a monoclonal anti-idiotype tumor vaccine against NeuGc-containing gangliosides with chemotherapy in a breast carcinoma model. Breast Cancer Res Treat 120, 379–389 (2010). https://doi.org/10.1007/s10549-009-0399-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-009-0399-9

Keywords

Navigation