Skip to main content

Advertisement

Log in

Antibody-dependent cell-mediated cytotoxicity induced by active immunotherapy based on racotumomab in non-small cell lung cancer patients

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Antitumor strategies based on positive modulation of the immune system currently represent therapeutic options with prominent acceptance for cancer patients’ treatment due to its selectivity and higher tolerance compared to chemotherapy. Racotumomab is an anti-idiotype (anti-Id) monoclonal antibody (mAb) directed to NeuGc-containing gangliosides such as NeuGcGM3, a widely reported tumor-specific neoantigen in many human cancers. Racotumomab has been approved in Latin American countries as an active immunotherapy for advanced non-small cell lung cancer (NSCLC) treatment. In this work, we evaluated the induction of Ab-dependent cell-mediated cytotoxicity (ADCC) in NSCLC patients included in a phase III clinical trial, in response to vaccination with racotumomab. The development of anti-NeuGcGM3 antibodies (Abs) in serum samples of immunized patients was first evaluated using the NeuGcGM3-expressing X63 cells, showing that racotumomab vaccination developed antigen-specific Abs that are able to recognize NeuGcGM3 expressed in tumor cell membranes. ADCC response against NeuGcGM3-expressing X63 (target) was observed in racotumomab-treated- but not in control group patients. When target cells were depleted of gangliosides by treatment with a glucosylceramide synthase inhibitor, we observed a significant reduction of the ADCC activity developed by sera from racotumomab-vaccinated patients, suggesting a target-specific response. Our data demonstrate that anti-NeuGcGM3 Abs induced by racotumomab vaccination are able to mediate an antigen-specific ADCC response against tumor cells in NSCLC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ADCC:

Antibody-dependent cell-mediated cytotoxicity

Anti-id:

Anti-idiotype

PDMP:

d-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol

References

  1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA Cancer J Clin 65(2):87–108. https://doi.org/10.3322/caac.21262

    Article  PubMed  Google Scholar 

  2. Molina JR, Yang P, Cassivi SD, Schild SE, Adjei AA (2008) Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc 83(5):584–594. https://doi.org/10.4065/83.5.584

    Article  PubMed  PubMed Central  Google Scholar 

  3. Tabchi S, Blais N, Campeau MP, Tehfe M (2017) Single-center comparison of multiple chemotherapy regimens for concurrent chemoradiotherapy in unresectable stage III non-small cell lung cancer. Cancer Chemother Pharmacol 79(2):381–387. https://doi.org/10.1007/s00280-016-3226-0

    Article  PubMed  CAS  Google Scholar 

  4. Jackman DM, Miller VA, Cioffredi L-A, Yeap BY, Jänne PA, Riely GJ, Ruiz MG, Giaccone G, Sequist LV, Johnson BE (2009) Impact of epidermal growth factor receptor and KRAS mutations on clinical outcomes in previously untreated non-small cell lung cancer patients: results of an online tumor registry of clinical trials. Clin Cancer Res 15 (16):5267

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Somasundaram A, Burns TF (2017) Pembrolizumab in the treatment of metastatic non-small-cell lung cancer: patient selection and perspectives. Lung Cancer 8:1–11. https://doi.org/10.2147/LCTT.S105678

    Article  PubMed  Google Scholar 

  6. Pillay V, Allaf L, Wilding AL, Donoghue JF, Court NW, Greenall SA, Scott AM, Johns TG (2009) The plasticity of oncogene addiction: implications for targeted therapies directed to receptor tyrosine kinases. Neoplasia 11(5):448–458 (442 p following 458)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Pillay V, Gan HK, Scott AM (2011) Antibodies in oncology. N Biotechnol 28(5):518–529. https://doi.org/10.1016/j.nbt.2011.03.021

    Article  PubMed  CAS  Google Scholar 

  8. Konitzer JD, Sieron A, Wacker A, Enenkel B (2015) Reformatting rituximab into human IgG2 and IgG4 isotypes dramatically improves apoptosis induction in vitro. PLoS One 10(12):e0145633. https://doi.org/10.1371/journal.pone.0145633

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Gong Q, Hazen M, Marshall B, Crowell SR, Ou Q, Wong AW, Phung W, Vernes JM, Meng YG, Tejada M, Andersen D, Kelley RF (2016) Increased in vivo effector function of human IgG4 isotype antibodies through afucosylation. MAbs 8(6):1098–1106. https://doi.org/10.1080/19420862.2016.1189049

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Lesterhuis WJ, Haanen JBAG, Punt CJA (2011) Cancer immunotherapy—revisited. Nat Rev Drug Discov 10(8):591–600

    Article  PubMed  CAS  Google Scholar 

  11. Galluzzi L, Vacchelli E, Bravo-San Pedro JM, Buque A, Senovilla L, Baracco EE, Bloy N, Castoldi F, Abastado JP, Agostinis P, Apte RN, Aranda F, Ayyoub M, Beckhove P, Blay JY, Bracci L, Caignard A, Castelli C, Cavallo F, Celis E, Cerundolo V, Clayton A, Colombo MP, Coussens L, Dhodapkar MV, Eggermont AM, Fearon DT, Fridman WH, Fucikova J, Gabrilovich DI, Galon J, Garg A, Ghiringhelli F, Giaccone G, Gilboa E, Gnjatic S, Hoos A, Hosmalin A, Jager D, Kalinski P, Karre K, Kepp O, Kiessling R, Kirkwood JM, Klein E, Knuth A, Lewis CE, Liblau R, Lotze MT, Lugli E, Mach JP, Mattei F, Mavilio D, Melero I, Melief CJ, Mittendorf EA, Moretta L, Odunsi A, Okada H, Palucka AK, Peter ME, Pienta KJ, Porgador A, Prendergast GC, Rabinovich GA, Restifo NP, Rizvi N, Sautes-Fridman C, Schreiber H, Seliger B, Shiku H, Silva-Santos B, Smyth MJ, Speiser DE, Spisek R, Srivastava PK, Talmadge JE, Tartour E, Van Der Burg SH, Van Den Eynde BJ, Vile R, Wagner H, Weber JS, Whiteside TL, Wolchok JD, Zitvogel L, Zou W, Kroemer G (2014) Classification of current anticancer immunotherapies. Oncotarget 5(24):12472–12508. https://doi.org/10.18632/oncotarget.2998

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wang W, Erbe AK, Hank JA, Morris ZS, Sondel PM (2015) NK cell-mediated antibody-dependent cellular cytotoxicity in cancer immunotherapy. Front Immunol 6:368. https://doi.org/10.3389/fimmu.2015.00368

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Uchida J, Hamaguchi Y, Oliver JA, Ravetch JV, Poe JC, Haas KM, Tedder TF (2004) The innate mononuclear phagocyte network depletes B lymphocytes through Fc receptor-dependent mechanisms during anti-CD20 antibody immunotherapy. J Exp Med 199(12):1659–1669. https://doi.org/10.1084/jem.20040119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Biburger M, Aschermann S, Schwab I, Lux A, Albert H, Danzer H, Woigk M, Dudziak D, Nimmerjahn F (2011) Monocyte subsets responsible for immunoglobulin G-dependent effector functions in vivo. Immunity 35(6):932–944. https://doi.org/10.1016/j.immuni.2011.11.009

    Article  PubMed  CAS  Google Scholar 

  15. Lanier LL, Ruitenberg JJ, Phillips JH (1988) Functional and biochemical analysis of CD16 antigen on natural killer cells and granulocytes. J Immunol 141(10):3478–3485

    PubMed  CAS  Google Scholar 

  16. Metes D, Manciulea M, Pretrusca D, Rabinowich H, Ernst LK, Popescu I, Calugaru A, Sulica A, Chambers WH, Herberman RB, Morel PA (1999) Ligand binding specificities and signal transduction pathways of Fc gamma receptor IIc isoforms: the CD32 isoforms expressed by human NK cells. Eur J Immunol 29(9):2842–2852. https://doi.org/10.1002/(SICI)1521-4141(199909)29:09<2842::AID-IMMU2842>3.0.CO;2-5

    Article  PubMed  CAS  Google Scholar 

  17. Veri MC, Gorlatov S, Li H, Burke S, Johnson S, Stavenhagen J, Stein KE, Bonvini E, Koenig S (2007) Monoclonal antibodies capable of discriminating the human inhibitory Fcgamma-receptor IIB (CD32B) from the activating Fcgamma-receptor IIA (CD32A): biochemical, biological and functional characterization. Immunology 121(3):392–404. https://doi.org/10.1111/j.1365-2567.2007.02588.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Scott AM, Wolchok JD, Old LJ (2012) Antibody therapy of cancer. Nat Rev Cancer 12(4):278–287. https://doi.org/10.1038/nrc3236

    Article  PubMed  CAS  Google Scholar 

  19. Seidel UJ, Schlegel P, Lang P (2013) Natural killer cell mediated antibody-dependent cellular cytotoxicity in tumor immunotherapy with therapeutic antibodies. Front Immunol 4:76. https://doi.org/10.3389/fimmu.2013.00076

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Vazquez AM, Perez A, Hernandez AM, Macias A, Alfonso M, Bombino G, Perez R (1998) Syngeneic anti-idiotypic monoclonal antibodies to an anti-NeuGc-containing ganglioside monoclonal antibody. Hybridoma 17(6):527–534

    Article  PubMed  CAS  Google Scholar 

  21. Alfonso S, Valdes-Zayas A, Santiesteban ER, Flores YI, Areces F, Hernandez M, Viada CE, Mendoza IC, Guerra PP, Garcia E, Ortiz RA, de la Torre AV, Cepeda M, Perez K, Chong E, Hernandez AM, Toledo D, Gonzalez Z, Mazorra Z, Crombet T, Perez R, Vazquez AM, Macias AE (2014) A randomized, multicenter, placebo-controlled clinical trial of racotumomab-alum vaccine as switch maintenance therapy in advanced non-small cell lung cancer patients. Clin Cancer Res 20(14):3660–3671. https://doi.org/10.1158/1078-0432.CCR-13-1674

    Article  PubMed  CAS  Google Scholar 

  22. Gabri MR, Cacciavillano W, Chantada GL, Alonso DF (2016) Racotumomab for treating lung cancer and pediatric refractory malignancies. Expert Opin Biol Ther 16(4):573–578. https://doi.org/10.1517/14712598.2016.1157579

    Article  PubMed  CAS  Google Scholar 

  23. van Cruijsen H, Ruiz MG, van der Valk P, de Gruijl TD, Giaccone G (2009) Tissue micro array analysis of ganglioside N-glycolyl GM3 expression and signal transducer and activator of transcription (STAT)-3 activation in relation to dendritic cell infiltration and microvessel density in non-small cell lung cancer. BMC Cancer 9:180. https://doi.org/10.1186/1471-2407-9-180

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Blanco R, Rengifo CE, Cedeno M, Frometa M, Rengifo E, Carr A (2012) Immunoreactivity of the 14F7 Mab (Raised against N-glycolyl GM3 ganglioside) as a positive prognostic factor in non-small-cell lung cancer. Patholog Res Int 2012:235418. https://doi.org/10.1155/2012/235418

    Article  PubMed  PubMed Central  Google Scholar 

  25. Blanco R, Dominguez E, Morales O, Blanco D, Martinez D, Rengifo CE, Viada C, Cedeno M, Rengifo E, Carr A (2015) Prognostic significance of N-Glycolyl GM3 ganglioside expression in non-small cell lung carcinoma patients: new evidences. Patholog Res Int 2015:132326. https://doi.org/10.1155/2015/132326

    Article  PubMed  PubMed Central  Google Scholar 

  26. Fuentes D, Avellanet J, Garcia A, Iglesias N, Gabri MR, Alonso DF, Vazquez AM, Perez R, Montero E (2010) Combined therapeutic effect of a monoclonal anti-idiotype tumor vaccine against NeuGc-containing gangliosides with chemotherapy in a breast carcinoma model. Breast Cancer Res Treat 120(2):379–389. https://doi.org/10.1007/s10549-009-0399-9

    Article  PubMed  CAS  Google Scholar 

  27. Diaz Y, Gonzalez A, Lopez A, Perez R, Vazquez AM, Montero E (2009) Anti-ganglioside anti-idiotypic monoclonal antibody-based cancer vaccine induces apoptosis and antiangiogenic effect in a metastatic lung carcinoma. Cancer Immunol Immunother 58(7):1117–1128. https://doi.org/10.1007/s00262-008-0634-y

    Article  PubMed  CAS  Google Scholar 

  28. Segatori VI, Vazquez AM, Gomez DE, Gabri MR, Alonso DF (2012) Preclinical evaluation of racotumomab, an anti-idiotype monoclonal antibody to N-glycolyl-containing gangliosides, with or without chemotherapy in a mouse model of non-small cell lung cancer. Front Oncol 2:160. https://doi.org/10.3389/fonc.2012.00160

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hernandez AM, Rodriguez N, Gonzalez JE, Reyes E, Rondon T, Grinan T, Macias A, Alfonso S, Vazquez AM, Perez R (2011) Anti-NeuGcGM3 antibodies, actively elicited by idiotypic vaccination in nonsmall cell lung cancer patients, induce tumor cell death by an oncosis-like mechanism. J Immunol 186(6):3735–3744. https://doi.org/10.4049/jimmunol.1000609

    Article  PubMed  CAS  Google Scholar 

  30. Carr A, Mullet A, Mazorra Z, Vazquez AM, Alfonso M, Mesa C, Rengifo E, Perez R, Fernandez LE (2000) A mouse IgG1 monoclonal antibody specific for N-glycolyl GM3 ganglioside recognized breast and melanoma tumors. Hybridoma 19(3):241–247. https://doi.org/10.1089/02724570050109639

    Article  PubMed  CAS  Google Scholar 

  31. Muthing J, Steuer H, Peter-Katalinic J, Marx U, Bethke U, Neumann U, Lehmann J (1994) Expression of gangliosides GM3 (NeuAc) and GM3 (NeuGc) in myelomas and hybridomas of mouse, rat, and human origin. J Biochem 116(1):64–73

    Article  PubMed  CAS  Google Scholar 

  32. Fedoryszak-Kuska N, Panasiewicz M, Domek H, Pacuszka T (2016) Glucosylceramide synthase inhibitors D-PDMP and D-EtDO-P4 decrease the GM3 ganglioside level, differ in their effects on insulin receptor autophosphorylation but increase Akt1 kinase phosphorylation in human hepatoma HepG2 cells. Acta Biochim Pol 63(2):247–251. https://doi.org/10.18388/abp.2014_930

    Article  PubMed  CAS  Google Scholar 

  33. Wei XX, Fong L, Small EJ (2015) Prostate cancer immunotherapy with sipuleucel-T: current standards and future directions. Expert Rev Vaccines 14(12):1529–1541. https://doi.org/10.1586/14760584.2015.1099437

    Article  PubMed  CAS  Google Scholar 

  34. van den Eertwegh AJM, Versluis J, van den Berg HP, Santegoets SJAM, van Moorselaar RJA, van der Sluis TM, Gall HE, Harding TC, Jooss K, Lowy I, Pinedo HM, Scheper RJ, Stam AGM, von Blomberg BME, de Gruijl TD, Hege K, Sacks N, Gerritsen WR (2012) Combined immunotherapy with granulocyte-macrophage colony-stimulating factor-transduced allogeneic prostate cancer cells and ipilimumab in patients with metastatic castration-resistant prostate cancer: a phase 1 dose-escalation trial. Lancet Oncol 13(5):509–517. https://doi.org/10.1016/S1470-2045(12)70007-4

    Article  PubMed  CAS  Google Scholar 

  35. Le DT, Jaffee EM (2013) Next-generation cancer vaccine approaches: integrating lessons learned from current successes with promising biotechnologic advances. J Natl Compr Canc Netw 11(7):766–772. https://doi.org/10.6004/jnccn.2013.0099

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Irie A, Koyama S, Kozutsumi Y, Kawasaki T, Suzuki A (1998) The molecular basis for the absence of N-glycolylneuraminic acid in humans. J Biol Chem 273(25):15866–15871

    Article  PubMed  CAS  Google Scholar 

  37. Oliva JP, Valdés Z, Casacó A, Pimentel G, González J, Álvarez I, Osorio M, Velazco M, Figueroa M, Ortiz R, Escobar X, Orozco M, Cruz J, Franco S, Díaz M, Roque L, Carr A, Vázquez AM, Mateos C, Rubio MC, Pérez R, Fernández LE (2006) Clinical evidences of GM3 (NeuGc) ganglioside expression in human breast cancer using the 14F7 monoclonal antibody labelled with 99mTc. Breast Cancer Res Treat 96(2):115–121. https://doi.org/10.1007/s10549-005-9064-0

    Article  PubMed  CAS  Google Scholar 

  38. Torbidoni AV, Scursoni A, Camarero S, Segatori V, Gabri M, Alonso D, Chantada G, de Davila MT (2015) Immunoreactivity of the 14F7 Mab raised against N-Glycolyl GM3 ganglioside in retinoblastoma tumours. Acta Ophthalmol 93(4):e294–e300. https://doi.org/10.1111/aos.12578

    Article  PubMed  CAS  Google Scholar 

  39. Scursoni AM, Galluzzo L, Camarero S, Lopez J, Lubieniecki F, Sampor C, Segatori VI, Gabri MR, Alonso DF, Chantada G, de Dávila MTG (2011) Detection of N-glycolyl GM3 ganglioside in neuroectodermal tumors by immunohistochemistry: an attractive vaccine target for aggressive pediatric cancer. Clin Dev Immunol 2011:245181. https://doi.org/10.1155/2011/245181

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Vamecq J, Mestdagh N, Henichart JP, Poupaert J (1992) Subcellular distribution of glycolyltransferases in rodent liver and their significance in special reference to the synthesis of N-glycolylneuraminic acid. J Biochem 111(5):579–583

    Article  PubMed  CAS  Google Scholar 

  41. Malykh YN, Schauer R, Shaw L (2001) N-Glycolylneuraminic acid in human tumours. Biochimie 83(7):623–634. https://doi.org/10.1016/S0300-9084(01)01303-7

    Article  PubMed  CAS  Google Scholar 

  42. Bardor M, Nguyen DH, Diaz S, Varki A (2005) Mechanism of uptake and incorporation of the non-human sialic acid N-glycolylneuraminic acid into human cells. J Biol Chem 280(6):4228–4237

    Article  PubMed  CAS  Google Scholar 

  43. Yin J, Hashimoto A, Izawa M, Miyazaki K, Chen GY, Takematsu H, Kozutsumi Y, Suzuki A, Furuhata K, Cheng FL, Lin CH, Sato C, Kitajima K, Kannagi R (2006) Hypoxic culture induces expression of sialin, a sialic acid transporter, and cancer-associated gangliosides containing non-human sialic acid on human cancer cells. Cancer Res 66(6):2937–2945. https://doi.org/10.1158/0008-5472.CAN-05-2615

    Article  PubMed  CAS  Google Scholar 

  44. Segatori VI, Otero LL, Fernandez LE, Gomez DE, Alonso DF, Gabri MR (2012) Antitumor protection by NGcGM3/VSSP vaccine against transfected B16 mouse melanoma cells overexpressing N-glycolylated gangliosides. In Vivo 26(4):609–617

    PubMed  CAS  Google Scholar 

  45. Gabri MR, Otero LL, Gomez DE, Alonso DF (2009) Exogenous incorporation of neugc-rich mucin augments N-glycolyl sialic acid content and promotes malignant phenotype in mouse tumor cell lines. J Exp Clin Cancer Res 28:146. https://doi.org/10.1186/1756-9966-28-146

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. de Leon J, Fernandez A, Mesa C, Clavel M, Fernandez LE (2006) Role of tumour-associated N-glycolylated variant of GM3 ganglioside in cancer progression: effect over CD4 expression on T cells. Cancer Immunol Immunother 55(4):443–450. https://doi.org/10.1007/s00262-005-0041-6

    Article  PubMed  CAS  Google Scholar 

  47. de León J, Fernández A, Clavell M, Labrada M, Bebelagua Y, Mesa C, Fernández LE (2008) Differential influence of the tumour-specific non-human sialic acid containing GM3 ganglioside on CD4+ CD25—effector and naturally occurring CD4+ CD25+ regulatory T cells function. Int Immunol 20(4):591–600. https://doi.org/10.1093/intimm/dxn018

    Article  PubMed  CAS  Google Scholar 

  48. Alfonso M, Diaz A, Hernandez AM, Perez A, Rodriguez E, Bitton R, Perez R, Vazquez AM (2002) An anti-idiotype vaccine elicits a specific response to N-glycolyl sialic acid residues of glycoconjugates in melanoma patients. J Immunol 168(5):2523–2529

    Article  PubMed  CAS  Google Scholar 

  49. Díaz A, Alfonso M, Alonso R, Saurez G, Troche M, Catalá M, Díaz RM, Pérez R, Vázquez AM (2003) Immune responses in breast cancer patients immunized with an anti-idiotype antibody mimicking NeuGc-containing gangliosides. Clin Immunol 107(2):80–89. https://doi.org/10.1016/S1521-6616(03)00036-6

    Article  PubMed  CAS  Google Scholar 

  50. Guthmann MD, Castro MA, Cinat G, Venier C, Koliren L, Bitton RJ, Vázquez AM, Fainboim L (2006) Cellular and humoral immune response to N-glycolyl-GM3 elicited by prolonged immunotherapy with an anti-idiotypic vaccine in high-risk and metastatic breast cancer patients. J Immunother 29(2):215–223. https://doi.org/10.1097/01.cji.0000188502.11348.34

    Article  PubMed  CAS  Google Scholar 

  51. Alfonso S, Díaz RM, de la Torre A, Santiesteban E, Aguirre F, Pérez K, Rodríguez JL, Barroso MC, Hernández AM, Toledo D, Gabri MR, Alonso DF, Viada C, Gómez RE, Pestana E, Suarez E, Vázquez AM, Perez R, Macías A (2007) 1E10 anti-idiotype vaccine in non-small cell lung cancer: experience in stage IIIb/IV patients. Cancer Biol Ther 6(12):1847–1852. https://doi.org/10.4161/cbt.6.12.5000

    Article  PubMed  CAS  Google Scholar 

  52. Neninger E, Diaz RM, de la Torre A, Rives R, Diaz A, Saurez G, Gabri MR, Alonso DF, Wilkinson B, Alfonso AM, Combet T, Perez R, Vázquez AM (2007) Active immunotherapy with 1E10 anti-idiotype vaccine in patients with small cell lung cancer: report of a phase I trial. Cancer Biol Ther 6(2):145–150. https://doi.org/10.4161/cbt.6.2.3574

    Article  PubMed  CAS  Google Scholar 

  53. Clynes RA, Towers TL, Presta LG, Ravetch JV (2000) Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat Med 6(4):443–446

    Article  PubMed  CAS  Google Scholar 

  54. Yu AL, Gilman AL, Ozkaynak MF, London WB, Kreissman SG, Chen HX, Smith M, Anderson B, Villablanca JG, Matthay KK, Shimada H, Grupp SA, Seeger R, Reynolds CP, Buxton A, Reisfeld RA, Gillies SD, Cohn SL, Maris JM, Sondel PM (2010) Anti-GD2 Antibody with GM-CSF, Interleukin-2, and Isotretinoin for Neuroblastoma. N Engl J Med 363(14):1324–1334. https://doi.org/10.1056/NEJMoa0911123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Barker E, Mueller BM, Handgretinger R, Herter M, Yu AL, Reisfeld RA (1991) Effect of a chimeric anti-ganglioside GD2 antibody on cell-mediated lysis of human neuroblastoma cells. Cancer Res 51(1):144–149

    PubMed  CAS  Google Scholar 

  56. Snijdewint FGM, von Mensdorff-Pouilly S, Karuntu-Wanamarta AH, Verstraeten AA, Livingston PO, Hilgers J, Kenemans P (2001) Antibody-dependent cell-mediated cytotoxicity can be induced by MUC1 peptide vaccination of breast cancer patients. Int J Cancer 93(1):97–106. https://doi.org/10.1002/ijc.1286

    Article  PubMed  CAS  Google Scholar 

  57. Pervin S, Chakraborty M, Bhattacharya-Chatterjee M, Zeytin H, Foon KA, Chatterjee SK (1997) Induction of antitumor immunity by an anti-idiotype antibody mimicking carcinoembryonic antigen. Cancer Res 57(4):728–734

    PubMed  CAS  Google Scholar 

  58. Lode HN, Schmidt M, Seidel D, Huebener N, Brackrock D, Bleeke M, Reker D, Brandt S, Mueller H-P, Helm C, Siebert N (2013) Vaccination with anti-idiotype antibody ganglidiomab mediates a GD2-specific anti-neuroblastoma immune response. Cancer Immunol Immunother 62(6):999–1010. https://doi.org/10.1007/s00262-013-1413-y

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Diego Mengual Gomez for his valuable support with the blood samples from healthy donors. The authors also thank Marina Pifano and Nazareno Gonzalez for their valuable contribution during the statistical analysis of the data. Valeria I Segatori and Héctor A Cuello are research fellows of ANPCyT (Argentina). Marina Albertó is a research fellow and Mariano R Gabri and Daniel F Alonso are members of the National Research Council (CONICET, Argentina).

Funding

This study was partially funded by National University of Quilmes (Grant No. 1398/15) and ELEA Laboratories.

Author information

Authors and Affiliations

Authors

Contributions

Valeria I. Segatori and Mariano R. Gabri participated in the conception and design of the experiments, the analysis and interpretation of data and in the process of manuscript writing. Héctor A. Cuello, Cynthia A. Gulino and Marina Albertó also contributed to the final version of the manuscript. Valeria I. Segatori, Héctor A. Cuello, Cynthia A. Gulino and Marina Albertó worked in development of methodology and acquisition of data. Cecilia Venier was involved in the ELISA assays. Marcelo D. Guthmann and Ignacio A. Demarco were responsible for patients’ samples. Review of the manuscript was done by Daniel F. Alonso and Mariano R. Gabri.

Corresponding author

Correspondence to Mariano R. Gabri.

Ethics declarations

Conflict of interest

Marcelo D. Guthmann and Ignacio A. Demarco are full employees of Elea Laboratories. They have no conflict of interest to declare. All other authors declare that they have no potential conflict of interest.

Ethical approval and ethical standards

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. For this type of study formal consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Segatori, V.I., Cuello, H.A., Gulino, C.A. et al. Antibody-dependent cell-mediated cytotoxicity induced by active immunotherapy based on racotumomab in non-small cell lung cancer patients. Cancer Immunol Immunother 67, 1285–1296 (2018). https://doi.org/10.1007/s00262-018-2188-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-018-2188-y

Keywords

Navigation