Skip to main content

Advertisement

Log in

Tumor-specific RNAi targeting eIF4E suppresses tumor growth, induces apoptosis and enhances cisplatin cytotoxicity in human breast carcinoma cells

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Background Eukaryotic initiation factor eIF4E, an important regulator of translation, plays a crucial role in the malignant transformation, progression and chemoresistance of many human solid tumors. The overexpression of this gene has been found in a variety of human malignancies including breast carcinoma. In the present study, we attempted to explore the possibility of eIF4E as a therapeutic target for the treatment of human breast carcinoma using breast carcinoma cell line (MCF-7). Materials and methods The survivin promoter-driven eIF4E-shRNA vector was constructed on the basis of pSUPER.retro vector. Then, we established stably transfected MCF-7 and MCF210 (normal human mammary epithelial cell) cells expressing eIF4E-shRNAs or control-shRNAs. Firstly, the changes of eIF4E expression were detected by RT-PCR and Western blot assays. Next, the optimal shRNA vector (eIF4E-shRNA2) was selected to knock down eIF4E expression and investigate the effect of eIF4E-shRNA on eIF4E-regulated gene expression and cell proliferation both in vitro and in vivo. Followingly, the changes of cell cycle and apoptosis in the stably transfectants (MCF-7) were detected by flow cytometry and TUNEL methods, while we also explored possible apoptosis pathways. Finally, we investigated the effect of shRNA targeting eIF4E on the chemosensitivity of breast carcinoma cells to cisplatin in vitro and in vivo. Results Two survivin promoter-driven eIF4E-shRNA vectors were successfully constructed. eIF4E-shRNA2 but not eIF4E-shRNA1 efficiently downregulated the levels of eIF4E expression in the stably transfected MCF-7-s2 cells but not in the stably transfected MCF210-s2 cells, while MCF-7-s2 showed obvious proliferation suppression but MCF210-s2 did not. The downregulation of eIF4E expression significantly reduced the levels of VEGF, FGF-2 and cyclinD1 expression, suppressed cell growth, induced cell cycle arrest in G0/G1 phase and subsequent apoptosis by activating caspase 3 in MCF-7 cells. The results of FCM and TUNEL staining assays indicated that the classic apoptosis characters of the MCF-7 cells stably expressing eIF4E-shRNA2 manifested an apoptosis rate of 18.3%, significantly higher than those in the control groups (< 0.05). Morever, we found that downregulation of c-IAP1, c-IAP2 and c-Myc but not Bcl-2 family proteins were involved in the apoptosis induced by eIF4E-shRNA2. In tumorigenicity assay, xenograft tumors developed from MCF-7-s2 cells in mice showed a significant slowdown in the growth speed and formation rate compared with control groups. Furthermore, we also testified that eIF4E-shRNA could synergistically enhance the cytotoxicity effects of cisplatin to MCF-7 cells both in vitro and in vivo. Conclusion Survivin promoter–driven RNA interference system could efficiently and specifically downregulate eIF4E expression in human breast carcinoma cells but not in normal human mammary epithelial cell cells. Thus, eIF4E might play an important role in chemosensitivity to cisplatin, and survivin promoter-driven RNAi targeting eIF4E can be used as adjuvant therapy for human breast carcinomas with tumor specificity and high efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. WHO (2003) World Health Report 2003. World Health Organization, Geneva

    Google Scholar 

  2. Biganzoli L, Minisini A, Aapro M, Di Leo A (2004) Chemotherapy for metastatic breast cancer. Curr Opin Obstet Gynecol 16:37–41

    Article  PubMed  Google Scholar 

  3. Foggi P, Amodio A (2003) Molecular therapy of breast carcinoma in the advanced phase. Tumori 89:189–191

    PubMed  CAS  Google Scholar 

  4. Joshi B, Cameron A, Jagus R (2004) Characterization of mammalian eIF4E-family members. Eur J Biochem 271:2189–2203

    Article  PubMed  CAS  Google Scholar 

  5. Von Der Haar T, Ball PD, McCarthy JE (2000) Stabilization of eukaryotic initiation factor 4E binding to the mRNA 5′-Cap by domains of elF4G. J Biol Chem 275:30551–30555

    Article  Google Scholar 

  6. Gingras AC, Raught B, Sonenberg N et al (1999) eIF4E initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem 68:913–963

    Article  PubMed  CAS  Google Scholar 

  7. Sonenberg N (1994) Regulation of translation and cell growth by eIF-4E. Biochimie 76:839–846

    Article  PubMed  CAS  Google Scholar 

  8. De Benedetti A, Graff JR (2004) eIF-4E expression and its role in malignancies and metastases. Oncogene 23:3189–3199

    Article  PubMed  CAS  Google Scholar 

  9. De Benedetti A, Harris A (1999) eIF4E expression in tumors: its possible role in progression of malignancies. Int J Biochem Cell Biol 31:59–72

    Article  PubMed  Google Scholar 

  10. Clemens MJ (2004) Targets and mechanisms for the regulation of translation in malignant transformation. Oncogene 23:3180–3188

    Article  PubMed  CAS  Google Scholar 

  11. Li BD, Liu L, Dawson M et al (1997) Overexpression of eukaryotic initiation factor 4E (eIF4E) in breast carcinoma. Cancer 79:2385–2389

    Article  PubMed  CAS  Google Scholar 

  12. Byrnes K, White S, Chu Q et al (2006) High eIF4E, VEGF, and microvessel density in stage I to III breast cancer. Ann Surg 243:684–690; discussion 691–692

    Article  PubMed  Google Scholar 

  13. Nathan CO, Liu L, Li B et al (1997) Detection of the proto-oncogene eIF4E in surgical margins may predict recurrence in head and neck cancer. Oncogene 15:579–584

    Article  PubMed  CAS  Google Scholar 

  14. Rosenwald IB, Chen JJ, Wang S et al (1999) Upregulation of protein synthesis initiation factor eIF4E is an early event during colon carcinogenesis. Oncogene 18:2507–2517

    Article  PubMed  CAS  Google Scholar 

  15. Crew JP, Fuggle S, Bicknell R et al (2000) Eukaryotic initiation factor-4E in superficial and muscle invasive bladder cancer and its correlation with vascular endothelial growth factor expression and tumour progression. Br J Cancer 82:161–166

    Article  PubMed  CAS  Google Scholar 

  16. Lee JW, Choi JJ, Lee KM et al (2005) eIF-4E expression is associated with histopathologic grades in cervical neoplasia. Hum Pathol 36:1197–1203

    Article  PubMed  CAS  Google Scholar 

  17. Walsh D, Meleady P, Power B et al (2003) Increased levels of the translation initiation factor eIF4E in differentiating epithelial lung tumor cell lines. Differentiation 71:126–134

    Article  PubMed  CAS  Google Scholar 

  18. Kevil C, De Benedetti A, Payne KD et al (1996) Translational regulation of vascular permeability factor by eukaryotic initiation factor 4E: implications for tumor angiogenesis. Int J Cancer 65:785–790

    Article  PubMed  CAS  Google Scholar 

  19. Rosenwald IB, Kaspar R, Rousseau D et al (1995) Eukaryotic translation initiation factor 4E regulates expression of cyclin D1 at transcriptional and post-transcriptional levels. J Biol Chem 270:21176–21180

    Article  PubMed  CAS  Google Scholar 

  20. Yde CW, Issinger OG (2006) Enhancing cisplatin sensitivity in MCF-7 human breast cancer cells by down-regulation of Bcl-2 and cyclin D1. Int J Oncol 29:1397–1404

    PubMed  CAS  Google Scholar 

  21. DeFatta RJ, Nathan CA, De Benedetti A (1999) Antisense RNA to eIF4E suppresses oncogenic properities of a head and neck squamous cell carcinoma cell line. Laryngoscope 109:1243–1248

    Google Scholar 

  22. Oridate N, Kim HJ, Xu X et al (2005) Growth inhibition of head and neck squamous carcinoma cells by small interfering RNAs targeting eIF4E or cyclin D1 alone or combined with cisplatin. Cancer Biol Ther 4:318–323

    Article  PubMed  CAS  Google Scholar 

  23. Wall NR, Shi Y (2003) Small RNA: can RNA interference be exploited for therapy? Lancet 362: 1401–1403

    Article  PubMed  CAS  Google Scholar 

  24. Sui G, Soohoo C, Affar el B et al (2002) A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc Natl Acad Sci USA 99:5515–5520

    Article  PubMed  CAS  Google Scholar 

  25. Zaffaroni N, Pennati M, Daidone MG (2005) Survivin as a target for new anticancer interventions. J Cell Mol Med 9:360–372

    Article  PubMed  CAS  Google Scholar 

  26. Li F (2005) Role of survivin and its splice variants in tumorigenesis. Br J Cancer 31:212–216

    Google Scholar 

  27. Wu B, Wang Y, Ren JH et al (2005) Molecular cloning of survivin gene promoter and detecting its specific activity in Hela cell. Chin J Cancer Biother 12:116–119

    Google Scholar 

  28. Chen JS, Liu JC, Shen L et al (2004) Cancer-specific activation of the survivin promoter and its potential use in gene therapy. Cancer Gene Ther 11:740–747

    Article  PubMed  CAS  Google Scholar 

  29. Nathan CO, Amirghahari N, Abreo F et al (2004) Overexpressed eIF4E is functionally active in surgical margins of head and neck cancer patients via activation of the Akt/mammalian target of rapamycin pathway. Clin Cancer Res 10:5820–5827

    Article  PubMed  CAS  Google Scholar 

  30. Li BD, McDonald JC, Nassar R et al (1998) Clinical outcome in stage I to III breast carcinoma and eIF4E overexpression. Ann Surg 227:756–761; discussion 761–763

    Article  PubMed  CAS  Google Scholar 

  31. Rousseau D, Kaspar R, Rosenwald I et al (1996) Translation initiation of ornithine decarboxylyase and nucleocytoplasmic transport of cyclin D1 mRNA are increased in cells overexpressing eukarotic initiation factor 4E. Proc Natl Acad Sci USA 93:1065–1070

    Article  PubMed  CAS  Google Scholar 

  32. Yang SX, Hewitt SM, Steinberg SM et al (2007) Expression levels of eIF4E, VEGF, and cyclin D1, and correlation of eIF4E with VEGF and cyclin D1 in multi-tumor tissue microarray. Oncol Rep 17:281–287

    PubMed  CAS  Google Scholar 

  33. Zhou S, Wang GP, Liu C et al (2006) Eukaryotic initiation factor 4E (eIF4E) and angiogenesis: prognostic markers for breast cancer. BMC Cancer 30(6):231

    Article  CAS  Google Scholar 

  34. GW Sledge Jr, Sr Loehrer PJ, BJ Roth et al (1988) Cisplatin as first-line therapy for metastatic breast cancer. J Clin Oncol 6:1811–1814

    PubMed  Google Scholar 

  35. Kwak YD, Koike H, Sugaya K (2003) RNA interference with small hairpin RNAs transcribed from a human U6 promoter-driven DNA vector. Pharmacol Sci 93:214–217

    Article  CAS  Google Scholar 

  36. Myslinski E, Amé JC, Krol A et al (2001) An unusually compact external promoter for RNA polymerase III transcription of the human H1RNA gene. Nucleic Acids Res 29:2502–2509

    Article  PubMed  CAS  Google Scholar 

  37. Yuan J, Wang X, Zhang Y et al (2006) shRNA transcribed by RNA Pol II promoter induce RNA interference in mammalian cell. Mol Biol Rep 33:43–49

    Article  PubMed  CAS  Google Scholar 

  38. Jing Yuan, Xiaobo Wang, Ying Zhang et al (2006) shRNA transcribed by RNA Pol II promoter induce RNA interference in mammalian cell. Mol Biol Rep 33:43–49

    Article  CAS  Google Scholar 

  39. Rao MK, Wilkinson MF (2006) Tissue-specific and cell type-specific RNA interference in vivo. Nat Protoc 1:1494–1501

    Article  PubMed  CAS  Google Scholar 

  40. Zhu ZB, Makhija SK, Lu B et al (2004) Transcriptional targeting of tumors with a novel tumor-specific survivin promoter. Cancer Gene Ther 11:256–262

    Article  PubMed  CAS  Google Scholar 

  41. Eastman A (1990) Activation of programmed cell death by anticancer agents: cisplatin as a model system. Cancer Cells 2:275–280

    PubMed  CAS  Google Scholar 

  42. Willemse P, Sleijfer DT, Mulder NH et al (1993) Cisplatin in breast cancer. Br J Cancer 67:638

    PubMed  CAS  Google Scholar 

  43. Sledge GW Jr, Loehrer PJ Sr, Roth BJ et al (1988) Cisplatin as first-line therapy for metastatic breast cancer. J Clin Oncol 6:1811–1814

Download references

Acknowledgements

We are grateful to every one of the Department of Clinical Laboratory for their sincere help and technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-Zhong Zhang.

Additional information

K. Dong and R. Wang are contributed equally to this study, should be regarded as joint First authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, K., Wang, R., Wang, X. et al. Tumor-specific RNAi targeting eIF4E suppresses tumor growth, induces apoptosis and enhances cisplatin cytotoxicity in human breast carcinoma cells. Breast Cancer Res Treat 113, 443–456 (2009). https://doi.org/10.1007/s10549-008-9956-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-008-9956-x

Keywords

Navigation