Skip to main content

Advertisement

Log in

Differences and similarities in breast cancer risk assessment models in clinical practice: which model to choose?

  • Epidemiology
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

To show differences and similarities between risk estimation models for breast cancer in healthy women from BRCA1/2-negative or untested families. After a systematic literature search seven models were selected: Gail-2, Claus Model, Claus Tables, BOADICEA, Jonker Model, Claus-Extended Formula, and Tyrer–Cuzick. Life-time risks (LTRs) for developing breast cancer were estimated for two healthy counsellees, aged 40, with a variety in family histories and personal risk factors. Comparisons were made with guideline thresholds for individual screening. Without a clinically significant family history LTRs varied from 6.7% (Gail-2 Model) to 12.8% (Tyrer–Cuzick Model). Adding more information on personal risk factors increased the LTRs and yearly mammography will be advised in most situations. Older models (i.e. Gail-2 and Claus) are likely to underestimate the LTR for developing breast cancer as their baseline risk for women is too low. When models include personal risk factors, surveillance thresholds have to be reformulated. For current clinical practice, the Tyrer–Cuzick Model and the BOADICEA Model seem good choices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Sant M, Francisci S, Capocaccia R et al (2006) Time trends of breast cancer survival in Europe in relation to incidence and mortality. Int J Cancer 119:2417–2422. doi:10.1002/ijc.22160

    Article  PubMed  CAS  Google Scholar 

  2. Dumitrescu RG, Cotarla I (2005) Understanding breast cancer risk—where do we stand in 2005? J Cell Mol Med 9:208–221. doi:10.1111/j.1582-4934.2005.tb00350.x

    Article  PubMed  CAS  Google Scholar 

  3. Euhus DM (2001) Understanding mathematical models for breast cancer risk assessment and counseling. Breast J 7:224–232. doi:10.1046/j.1524-4741.2001.20012.x

    Article  PubMed  CAS  Google Scholar 

  4. Domchek SM, Eisen A, Calzone K et al (2003) Application of breast cancer risk prediction models in clinical practice. J Clin Oncol 21:593–601. doi:10.1200/JCO.2003.07.007

    Article  PubMed  Google Scholar 

  5. Antoniou AC, Easton DF (2006) Risk prediction models for familial breast cancer. Future Oncol 2:257–274. doi:10.2217/14796694.2.2.257

    Article  PubMed  Google Scholar 

  6. Ottman R, Pike MC, King MC, Henderson BE (1983) Practical guide for estimating risk for familial breast cancer. Lancet 2:556–558. doi:10.1016/S0140-6736(83) 90580-9

    Article  PubMed  CAS  Google Scholar 

  7. Anderson DE, Badzioch MD (1985) Risk of familial breast cancer. Cancer 56:383–387. doi:10.1002/1097-0142(19850715)56:2<383::AID-CNCR2820560230>3.0.CO;2-0

    Article  PubMed  CAS  Google Scholar 

  8. Gail MH, Brinton LA, Byar DP, Mulvihill JJ et al (1989) Projecting individualized probabilities of developing breast cancer for white females who are being examined annually. J Natl Cancer Inst 81:1879–1886. doi:10.1093/jnci/81.24.1879

    Article  PubMed  CAS  Google Scholar 

  9. Claus EB, Risch N, Thompson WD (1991) Genetic analysis of breast cancer in the cancer and steroid hormone study. Am J Hum Genet 48:232–242

    PubMed  CAS  Google Scholar 

  10. Claus EB, Risch N, Thompson WD (1993) The calculation of breast cancer risk for women with a first degree family history of ovarian cancer. Breast Cancer Res Treat 28:115–120. doi:10.1007/BF00666424

    Article  PubMed  CAS  Google Scholar 

  11. Claus EB, Risch N, Thompson WD (1994) Autosomal dominant inheritance of early-onset breast cancer. Implications for risk prediction. Cancer 73:643–651. doi:10.1002/1097-0142(19940201)73:3<643::AID-CNCR2820730323>3.0.CO;2-5

    Article  PubMed  CAS  Google Scholar 

  12. Kerber RA (1995) Method for calculating risk associated with family history of a disease. Genet Epidemiol 12:291–301. doi:10.1002/gepi.1370120306

    Article  PubMed  CAS  Google Scholar 

  13. Colditz GA, Rosner BA, Speizer FE (1996) Risk factors for breast cancer according to family history of breast cancer. For the Nurses’ Health Study Research Group. J Natl Cancer Inst 88:365–371. doi:10.1093/jnci/88.6.365

    Article  PubMed  CAS  Google Scholar 

  14. Rosner B, Colditz GA (1996) Nurses’ health study: log-incidence mathematical model of breast cancer incidence. J Natl Cancer Inst 88:359–364. doi:10.1093/jnci/88.6.359

    Article  PubMed  CAS  Google Scholar 

  15. Fisher B, Costantino JP, Wickerham DL et al (1998) Tamoxifen for prevention of breast cancer: report of the National Surgical Adjuvant Breast and Bowel Project P-1 Study. J Natl Cancer Inst 90:1371–1388. doi:10.1093/jnci/90.18.1371

    Article  PubMed  CAS  Google Scholar 

  16. Antoniou AC, Pharoah PD, McMullan G (2002) A comprehensive model for familial breast cancer incorporating BRCA1, BRCA2 and other genes. Br J Cancer 86:76–83. doi:10.1038/sj.bjc.6600008

    Article  PubMed  CAS  Google Scholar 

  17. Jonker MA, Jacobi CE, Hoogendoorn WE et al (2003) Modeling familial clustered breast cancer using published data. Cancer Epidemiol Biomarkers Prev 12:1479–1485

    PubMed  CAS  Google Scholar 

  18. Antoniou AC, Pharoah PP, Smith P (2004) The BOADICEA model of genetic susceptibility to breast and ovarian cancer. Br J Cancer 91:1580–1590

    PubMed  CAS  Google Scholar 

  19. Boyle P, Mezzetti M, La Vecchia C et al (2004) Contribution of three components to individual cancer risk predicting breast cancer risk in Italy. Eur J Cancer Prev 13:183–191. doi:10.1097/01.cej.0000130014.83901.53

    Article  PubMed  CAS  Google Scholar 

  20. Lee EO, Ahn SH, You C et al (2004) Determining the main risk factors and high-risk groups of breast cancer using a predictive model for breast cancer risk assessment in South Korea. Cancer Nurs 27:400–406. doi:10.1097/00002820-200409000-00010

    Article  PubMed  Google Scholar 

  21. Tyrer J, Duffy SW, Cuzick J (2004) A breast cancer prediction model incorporating familial and personal risk factors. Stat Med 23:1111–1130. doi:10.1002/sim.1668

    Article  PubMed  Google Scholar 

  22. van Asperen CJ, Jonker MA, Jacobi CE et al (2004) Risk estimation for healthy women from breast cancer families: new insights and new strategies. Cancer Epidemiol Biomarkers Prev 13:87–93. doi:10.1158/1055-9965.EPI-03-0090

    Article  PubMed  Google Scholar 

  23. Simon MS, Korczak JF, Yee CL et al (2006) Breast cancer risk estimates for relatives of white and African American women with breast cancer in the Women’s Contraceptive and Reproductive Experiences Study. J Clin Oncol 24:2498–2504. doi:10.1200/JCO.2005.04.1087

    Article  PubMed  Google Scholar 

  24. Bondy ML, Lustbader ED, Halabi S et al (1994) Validation of a breast cancer risk assessment model in women with a positive family history. J Natl Cancer Inst 86:620–625. doi:10.1093/jnci/86.8.620

    Article  PubMed  CAS  Google Scholar 

  25. Spiegelman D, Colditz GA, Hunter D et al (1994) Validation of the Gail et al. model for predicting individual breast cancer risk. J Natl Cancer Inst 86:600–607. doi:10.1093/jnci/86.8.600

    Article  PubMed  CAS  Google Scholar 

  26. McGuigan KA, Ganz PA, Breant C (1996) Agreement between breast cancer risk estimation methods. J Natl Cancer Inst 88:1315–1317. doi:10.1093/jnci/88.18.1315

    Article  PubMed  CAS  Google Scholar 

  27. McTiernan A, Gilligan MA, Redmond C (1997) Assessing individual risk for breast cancer: risky business. J Clin Epidemiol 50:547–556. doi:10.1016/S0895-4356(97) 00013-9

    Article  PubMed  CAS  Google Scholar 

  28. Costantino JP, Gail MH, Pee D et al (1999) Validation studies for models projecting the risk of invasive and total breast cancer incidence. J Natl Cancer Inst 91:1541–1548. doi:10.1093/jnci/91.18.1541

    Article  PubMed  CAS  Google Scholar 

  29. Euhus DM, Leitch AM, Huth JF et al (2002) Limitations of the Gail model in the specialized breast cancer risk assessment clinic. Breast J 8:23–27. doi:10.1046/j.1524-4741.2002.08005.x

    Article  PubMed  Google Scholar 

  30. MacKarem G, Roche CA, Hughes KS (2001) The effectiveness of the Gail model in estimating risk for development of breast cancer in women under 40 years of age. Breast J 7(1):34–39. doi:10.1046/j.1524-4741.2001.007001034.x

    Article  PubMed  CAS  Google Scholar 

  31. McTiernan A, Kuniyuki A, Yasui Y et al (2001) Comparisons of two breast cancer risk estimates in women with a family history of breast cancer. Cancer Epidemiol Biomarkers Prev 10:333–338

    PubMed  CAS  Google Scholar 

  32. Rockhill B, Spiegelman D, Byrne C et al (2001) Validation of the Gail et al. model of breast cancer risk prediction and implications for chemoprevention. J Natl Cancer Inst 93:358–366. doi:10.1093/jnci/93.5.358

    Article  PubMed  CAS  Google Scholar 

  33. Amir E, Evans DG, Shenton A et al (2003) Evaluation of breast cancer risk assessment packages in the family history evaluation and screening programme. J Med Genet 40:807–814. doi:10.1136/jmg.40.11.807

    Article  PubMed  CAS  Google Scholar 

  34. Tchou J, Morrow M (2003) Available models for breast cancer risk assessment: how accurate are they? J Am Coll Surg 197:1029–1035. doi:10.1016/j.jamcollsurg.2003.07.018

    Article  PubMed  Google Scholar 

  35. Lippman SM, Bassford TL, Meyskens FL Jr (1992) A quantitatively scored cancer-risk assessment tool: its development and use. J Cancer Educ 7:15–36

    Article  PubMed  CAS  Google Scholar 

  36. Benichou J (1993) A computer program for estimating individualized probabilities of breast cancer. Comput Biomed Res 26:373–382. doi:10.1006/cbmr.1993.1026

    Article  PubMed  CAS  Google Scholar 

  37. Benichou J, Gail MH, Mulvihill JJ (1996) Graphs to estimate an individualized risk of breast cancer. J Clin Oncol 14:103–110

    PubMed  CAS  Google Scholar 

  38. Gilpin CA, Carson N, Hunter AG (2000) A preliminary validation of a family history assessment form to select women at risk for breast or ovarian cancer for referral to a genetics center. Clin Genet 58:299–308. doi:10.1034/j.1399-0004.2000.580408.x

    Article  PubMed  CAS  Google Scholar 

  39. Coulson AS, Glasspool DW, Fox J et al (2001) RAGs: a novel approach to computerized genetic risk assessment and decision support from pedigrees. Methods Inf Med 40:315–322

    PubMed  CAS  Google Scholar 

  40. Glasspool DW, Fox J, Coulson AS et al (2001) Risk assessment in genetics: a semi-quantitative approach. Medinfo 10:459–463

    Google Scholar 

  41. Rhodes DJ (2002) Identifying and counseling women at increased risk for breast cancer. Mayo Clin Proc 77:355–360

    Article  PubMed  Google Scholar 

  42. Hampel H, Sweet K, Westman JA et al (2004) Referral for cancer genetics consultation: a review and compilation of risk assessment criteria. J Med Genet 41:81–91. doi:10.1136/jmg.2003.010918

    Article  PubMed  CAS  Google Scholar 

  43. Emery J (2005) The GRAIDS Trial: the development and evaluation of computer decision support for cancer genetic risk assessment in primary care. Ann Hum Biol 32:218–227. doi:10.1080/03014460500074921

    Article  PubMed  CAS  Google Scholar 

  44. Washburn NJ, Sommer VK, Spencer SE et al (2005) Outpatient genetic risk assessment in women with breast cancer: one center’s experience. Clin J Oncol Nurs 9:49–53. doi:10.1188/05.CJON.49-53

    Article  PubMed  Google Scholar 

  45. Parkin DM, Bray F, Ferlay J et al (2005) Global cancer statistics, 2002. CA Cancer J Clin 55:74–108

    Article  PubMed  Google Scholar 

  46. Freedman AN, Seminara D, Gail MH et al (2005) Cancer risk prediction models: a workshop on development, evaluation, and application. J Natl Cancer Inst 97:715–723

    Article  PubMed  Google Scholar 

  47. Antoniou AC, Durocher F, Smith P et al (2006) BRCA1 and BRCA2 mutation predictions using the BOADICEA and BRCAPRO models and penetrance estimation in high-risk French-Canadian families. Breast Cancer Res 8:R3. doi:10.1186/bcr1365

    Article  PubMed  CAS  Google Scholar 

  48. Antoniou AC, Cunningham AP, Peto J et al (2008) The BOADICEA model of genetic susceptibility to breast and ovarian cancers: updates and extensions. Br J Cancer 22(98):1457–1466. doi:10.1038/sj.bjc.6604305

    Article  CAS  Google Scholar 

  49. Meijers-Heijboer H, van den Ouweland A, Klijn J et al (2002) Low-penetrance susceptibility to breast cancer due to CHEK2(*) 1100delC in noncarriers of BRCA1 or BRCA2 mutations. Nat Genet 31:55–59. doi:10.1038/ng879

    Article  PubMed  CAS  Google Scholar 

  50. Easton DF, Pooley KA, Dunning AM et al (2007) Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447:1087–1093. doi:10.1038/nature05887

    Article  PubMed  CAS  Google Scholar 

  51. Moss SM, Cuckle H, Evans A et al (2006) Effect of mammographic screening from age 40 years on breast cancer mortality at 10 years’ follow-up: a randomised controlled trial. Lancet 368:2053–2060. doi:10.1016/S0140-6736(06) 69834-6

    Article  PubMed  Google Scholar 

  52. Djulbegovic B, Lyman GH (2006) Screening mammography at 40–49 years: regret or no regret? Lancet 368:2035–2037. doi:10.1016/S0140-6736(06) 69816-4

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge AC Antoniou for providing us with software for his risk assessment model BOADICEA. We also would like to thank our librarian JW Schoones for his help with the literature search.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christi J. van Asperen.

Appendix 1: Literature search

Appendix 1: Literature search

In all search engines, the two concepts “Familial breast cancer” and “Risk models” are represented by different variations or permutations of relevant terms.

PubMed (1950–2006)

In PubMed, words or phrases without field descriptions are mapped automatically to the appropriate field descriptions such as title, abstract, MeSH (Medical Subject Headings), MaJR (Major Medical Subject Headings). The concepts are combined, using the following search strategy:

(“familial breast cancer risk” OR (“breast cancer families” AND risk) OR (“breast cancer family” AND risk) OR (“risk assessment” AND “familial breast cancer”)) AND ((risk[ti] AND (model[ti] OR assessment[ti]) OR ((“Models, Statistical”[Majr] OR “Models, Genetic”[Majr]) AND “Probability”[Mesh]))) OR (“Breast Neoplasms/genetics”[Majr] OR (breast cancer AND (“Mass Screening”[MeSH] OR “Genetic Services”[MeSH] OR familial OR family OR families OR gene OR genes OR “Genetic Predisposition to Disease”[MeSH]))) AND ((risk[ti] AND (model[ti] OR assessment[ti]) OR ((“Models, Statistical”[Majr] OR “Models, Genetic”[Majr]) AND “Probability”[Mesh])))

EMBASE (1980–2006)

In EMBASE, subject headings and free text words are used in combination. Subject headings are marked with ‘/’ at the end of the specific term and are “exploded”, i.e. the narrower subject headings are also selected automatically. The following field descriptions were used for free text terms: mp = title, abstract, subject headings, heading word, drug trade name, original title, device manufacturer, drug manufacturer name; ti = title. The concepts are combined, using the following search strategy:

(familial breast cancer risk.mp OR (breast cancer families AND risk).mp OR (breast cancer family AND risk).mp OR (risk assessment AND familial breast cancer).mp) AND ((risk.ti AND (model.ti OR assessment.ti) OR ((exp mathematical model/) AND exp risk/))) OR ((exp *Breast Cancer/AND genetic$.mp) OR (exp Breast Cancer/AND (exp genetic service/OR exp cancer screening/OR familial.mp OR family.mp OR families.mp OR gene.mp OR genes.mp OR exp multifactorial inheritance/))) AND ((risk.ti AND (model.ti OR assessment.ti) OR ((exp mathematical model/) AND exp risk/)))

Web of Science (1945–2006)

In the Web of Science, free text words are used in combination. Words preceded by TI are searched in the field title. Words preceded by TS are searched in the fields abstract, keywords, or title. The concepts are combined, using the following search strategy:

(((TS=“risk assessment” AND TS=“familial breast cancer”) OR TS=“familial breast cancer risk” OR (TS=“breast cancer families” AND TS=risk) OR (TS=“breast cancer family” AND TS=risk)) AND ((TI=risk AND (TI=model OR TI=assessment)) OR (TS=model* AND TS=risk*))) OR (((TI=“Breast Cancer” OR TI=“breast tumor*” OR TI=“breast tumour*” OR TI=“breast carcin*” OR TI=“breast neoplas*”) AND (TS=“genetic screen*” OR TS=“cancer screen*” OR TS=famil* OR TS=gene OR TS=genes OR TS=predispos* OR TS=susceptib*)) AND ((TI=risk* AND (TI=model* OR TI=assessment)) OR (TS=model* AND TI=risk*))) OR ((((TI=“Breast Cancer” OR TI=“breast tumor*” OR TI=“breast tumour*” OR TI=“breast carcin*” OR TI=“breast neoplas*”) AND TI=genetic*)) AND ((TI=risk* AND (TI=model* OR TI=assessment)) OR (TS=model* AND TI=risk*)))

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacobi, C.E., de Bock, G.H., Siegerink, B. et al. Differences and similarities in breast cancer risk assessment models in clinical practice: which model to choose?. Breast Cancer Res Treat 115, 381–390 (2009). https://doi.org/10.1007/s10549-008-0070-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-008-0070-x

Keywords

Navigation