Skip to main content

Advertisement

Log in

Comprehensive analysis of oncogenic effects of PIK3CA mutations in human mammary epithelial cells

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

More than 20 different PIK3CA gene mutations were identified in breast cancer with different frequencies. Whether these breast cancer associated mutations have similar biological effects is largely unknown. In this study, we established a novel cell model using the lentivirus system to express 10 different PIK3CA genes (wild type and mutant) based on the human mammary epithelial cell MCF10A. We found that nine different PIK3CA mutants harbor different abilities to promote cell proliferation and EGF independent growth. In addition, most PIK3CA mutants (except for the wild type PIK3CA, the Q60K and the K111N mutants) had the ability to change the morphogenesis of the MCF10A cell in 3D Matrigel assay. Moreover, different PIK3CA mutants have different abilities to promote colony formation and cell invasion. We further observed that most of the PIK3CA mutants could activate p-AKT and p-p70-S6K in the absence of EGF stimulation. Finally, LY294002, a PI3K inhibitor, can effectively inhibit cell growth in cell lines with different PIK3CAs. Taken together, our results support the notion that different PIK3CA mutations differentially contribute to breast cancer transformation, and exploration of the therapeutic application of these mutations will benefit breast cancer patients with the PIK3CA mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

PI3K:

Phosphatidylinositol 3-kinase

CEF:

Chicken embryo fibroblasts

HMEC:

Human mammary epithelial cell

EGF:

Epidermal growth factor

ErbB2v-erb-b2:

Erythroblastic leukemia viral oncogene homolog

References

  1. Leevers SJ, Vanhaesebroeck B, Waterfield MD (1999) Signalling through phosphoinositide 3-kinases: the lipids take centre stage. Curr Opin Cell Biol 11(2):219–225

    Article  PubMed  CAS  Google Scholar 

  2. Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2(7):489–501

    Article  PubMed  CAS  Google Scholar 

  3. Bader AG, Kang S, Zhao L, Vogt PK (2005) Oncogenic PI3K deregulates transcription and translation. Nat Rev Cancer 5(12):921–929

    Article  PubMed  CAS  Google Scholar 

  4. Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296(5573):1655–1657

    Article  PubMed  CAS  Google Scholar 

  5. Hawkins PT, Anderson KE, Davidson K, Stephens LR (2006) Signalling through Class I PI3Ks in mammalian cells. Biochem Soc Trans 34(Pt 5):647–662

    PubMed  CAS  Google Scholar 

  6. Knuutila S, Bjorkqvist AM, Autio K, Tarkkanen M, Wolf M, Monni O, Szymanska J, Larramendy ML, Tapper J, Pere H et al (1998) DNA copy number amplifications in human neoplasms: review of comparative genomic hybridization studies. Am J Pathol 152(5):1107–1123

    PubMed  CAS  Google Scholar 

  7. Larramendy ML, Lushnikova T, Bjorkqvist AM, Wistuba II, Virmani AK, Shivapurkar N, Gazdar AF, Knuutila S (2000) Comparative genomic hybridization reveals complex genetic changes in primary breast cancer tumors and their cell lines. Cancer Genet Cytogenet 119(2):132–138

    Article  PubMed  CAS  Google Scholar 

  8. Rooney PH, Murray GI, Stevenson DA, Haites NE, Cassidy J, McLeod HL (1999) Comparative genomic hybridization and chromosomal instability in solid tumours. Br J Cancer 80(5–6):862–873

    Article  PubMed  CAS  Google Scholar 

  9. Ma YY, Wei SJ, Lin YC, Lung JC, Chang TC, Whang-Peng J, Liu JM, Yang DM, Yang WK, Shen CY (2000) PIK3CA as an oncogene in cervical cancer. Oncogene 19(23):2739–2744

    Article  PubMed  CAS  Google Scholar 

  10. Racz A, Brass N, Heckel D, Pahl S, Remberger K, Meese E (1999) Expression analysis of genes at 3q26-q27 involved in frequent amplification in squamous cell lung carcinoma. Eur J Cancer 35(4):641–646

    Article  PubMed  CAS  Google Scholar 

  11. Redon R, Muller D, Caulee K, Wanherdrick K, Abecassis J, du Manoir S (2001) A simple specific pattern of chromosomal aberrations at early stages of head and neck squamous cell carcinomas: PIK3CA but not p63 gene as a likely target of 3q26-qter gains. Cancer Res 61(10):4122–4129

    PubMed  CAS  Google Scholar 

  12. Shayesteh L, Lu Y, Kuo WL, Baldocchi R, Godfrey T, Collins C, Pinkel D, Powell B, Mills GB, Gray JW (1999) PIK3CA is implicated as an oncogene in ovarian cancer. Nat Genet 21(1):99–102

    Article  PubMed  CAS  Google Scholar 

  13. Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S, Yan H, Gazdar A, Powell SM, Riggins GJ et al (2004) High frequency of mutations of the PIK3CA gene in human cancers. Science 304(5670):554

    Article  PubMed  CAS  Google Scholar 

  14. Bachman KE, Argani P, Samuels Y, Silliman N, Ptak J, Szabo S, Konishi H, Karakas B, Blair BG, Lin C et al (2004) The PIK3CA gene is mutated with high frequency in human breast cancers. Cancer Biol Ther 3(8):772–775

    Article  PubMed  CAS  Google Scholar 

  15. Campbell IG, Russell SE, Choong DY, Montgomery KG, Ciavarella ML, Hooi CS, Cristiano BE, Pearson RB, Phillips WA (2004) Mutation of the PIK3CA gene in ovarian and breast cancer. Cancer Res 64(21):7678–7681

    Article  PubMed  CAS  Google Scholar 

  16. Saal LH, Holm K, Maurer M, Memeo L, Su T, Wang X, Yu JS, Malmstrom PO, Mansukhani M, Enoksson J et al (2005) PIK3CA mutations correlate with hormone receptors, node metastasis, and ERBB2, and are mutually exclusive with PTEN loss in human breast carcinoma. Cancer Res 65(7):2554–2559

    Article  PubMed  CAS  Google Scholar 

  17. Wu G, Xing M, Mambo E, Huang X, Liu J, Guo Z, Chatterjee A, Goldenberg D, Gollin SM, Sukumar S et al (2005) Somatic mutation and gain of copy number of PIK3CA in human breast cancer. Breast Cancer Res 7(5):R609–616

    Article  PubMed  CAS  Google Scholar 

  18. Isakoff SJ, Engelman JA, Irie HY, Luo J, Brachmann SM, Pearline RV, Cantley LC, Brugge JS (2005) Breast cancer-associated PIK3CA mutations are oncogenic in mammary epithelial cells. Cancer Res 65(23):10992–11000

    Article  PubMed  CAS  Google Scholar 

  19. Zhao JJ, Liu Z, Wang L, Shin E, Loda MF, Roberts TM (2005) The oncogenic properties of mutant p110alpha and p110beta phosphatidylinositol 3-kinases in human mammary epithelial cells. Proc Natl Acad Sci USA 102(51):18443–18448

    Article  PubMed  CAS  Google Scholar 

  20. Debnath J, Muthuswamy SK, Brugge JS (2003) Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 30(3):256–268

    Article  PubMed  CAS  Google Scholar 

  21. Lee GY, Kenny PA, Lee EH, Bissell MJ (2007) Three-dimensional culture models of normal and malignant breast epithelial cells. Nat Methods 4(4):359–365

    Article  PubMed  CAS  Google Scholar 

  22. Shaw KR, Wrobel CN, Brugge JS (2004) Use of three-dimensional basement membrane cultures to model oncogene-induced changes in mammary epithelial morphogenesis. J Mammary Gland Biol Neoplasia 9(4):297–310

    Article  PubMed  Google Scholar 

  23. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  PubMed  CAS  Google Scholar 

  24. Bader AG, Kang S, Vogt PK (2006) Cancer-specific mutations in PIK3CA are oncogenic in vivo. Proc Natl Acad Sci USA 103(5):1475–1479

    Article  PubMed  CAS  Google Scholar 

  25. Kang S, Bader AG, Vogt PK (2005) Phosphatidylinositol 3-kinase mutations identified in human cancer are oncogenic. Proc Natl Acad Sci USA 102(3):802–807

    Article  PubMed  CAS  Google Scholar 

  26. Samuels Y, Diaz LA Jr., Schmidt-Kittler O, Cummins JM, Delong L, Cheong I, Rago C, Huso DL, Lengauer C, Kinzler KW et al (2005) Mutant PIK3CA promotes cell growth and invasion of human cancer cells. Cancer Cell 7(6):561–573

    Article  PubMed  CAS  Google Scholar 

  27. Gymnopoulos M, Elsliger MA, Vogt PK (2007) Rare cancer-specific mutations in PIK3CA show gain of function. Proc Natl Acad Sci USA 104(13):5569–5574

    Article  PubMed  CAS  Google Scholar 

  28. Debnath J, Walker SJ, Brugge JS (2003) Akt activation disrupts mammary acinar architecture and enhances proliferation in an mTOR-dependent manner. J Cell Biol 163(2):315–326

    Article  PubMed  CAS  Google Scholar 

  29. Woods Ignatoski KM, Livant DL, Markwart S, Grewal NK, Ethier SP (2003) The role of phosphatidylinositol 3’-kinase and its downstream signals in erbB-2-mediated transformation. Mol Cancer Res 1(7):551–560

    PubMed  CAS  Google Scholar 

  30. Guo XN, Rajput A, Rose R, Hauser J, Beko A, Kuropatwinski K, LeVea C, Hoffman RM, Brattain MG, Wang J (2007) Mutant PIK3CA-bearing colon cancer cells display increased metastasis in an orthotopic model. Cancer Res 67(12):5851–5858

    Article  PubMed  CAS  Google Scholar 

  31. Arboleda MJ, Lyons JF, Kabbinavar FF, Bray MR, Snow BE, Ayala R, Danino M, Karlan BY, Slamon DJ (2003) Overexpression of AKT2/protein kinase Bbeta leads to up-regulation of beta1 integrins, increased invasion, and metastasis of human breast and ovarian cancer cells. Cancer Res 63(1):196–206

    PubMed  CAS  Google Scholar 

  32. Eccles SA (2001) The role of c-erbB-2/HER2/neu in breast cancer progression and metastasis. J Mammary Gland Biol Neoplasia 6(4):393–406

    Article  PubMed  CAS  Google Scholar 

  33. Enomoto A, Murakami H, Asai N, Morone N, Watanabe T, Kawai K, Murakumo Y, Usukura J, Kaibuchi K, Takahashi M (2005) Akt/PKB regulates actin organization and cell motility via Girdin/APE. Develop Cell 9(3):389–402

    Article  CAS  Google Scholar 

  34. Irie HY, Pearline RV, Grueneberg D, Hsia M, Ravichandran P, Kothari N, Natesan S, Brugge JS (2005) Distinct roles of Akt1 and Akt2 in regulating cell migration and epithelial-mesenchymal transition. J Cell Biol 171(6):1023–1034

    Article  PubMed  CAS  Google Scholar 

  35. Li YM, Pan Y, Wei Y, Cheng X, Zhou BP, Tan M, Zhou X, Xia W, Hortobagyi GN, Yu D et al (2004) Upregulation of CXCR4 is essential for HER2-mediated tumor metastasis. Cancer Cell 6(5):459–469

    Article  PubMed  CAS  Google Scholar 

  36. Tan M, Li P, Klos KS, Lu J, Lan KH, Nagata Y, Fang D, Jing T, Yu D (2005) ErbB2 promotes Src synthesis and stability: novel mechanisms of Src activation that confer breast cancer metastasis. Cancer Res 65(5):1858–1867

    Article  PubMed  CAS  Google Scholar 

  37. Luo J, Manning BD, Cantley LC (2003) Targeting the PI3K-Akt pathway in human cancer: rationale and promise. Cancer Cell 4(4):257–262

    Article  PubMed  CAS  Google Scholar 

  38. Workman P (2004) Inhibiting the phosphoinositide 3-kinase pathway for cancer treatment. Biochem Soc Trans 32(Pt 2):393–396

    Article  PubMed  CAS  Google Scholar 

  39. Bianco R, Shin I, Ritter CA, Yakes FM, Basso A, Rosen N, Tsurutani J, Dennis PA, Mills GB, Arteaga CL (2003) Loss of PTEN/MMAC1/TEP in EGF receptor-expressing tumor cells counteracts the antitumor action of EGFR tyrosine kinase inhibitors. Oncogene 22(18):2812–2822

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by start-up fund (to GW) from the Barbara Ann Karmanos Cancer Institute, Department of Pathology, Wayne State University. We also thank Mrs Courtney McCrimmon for editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guojun Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Liu, G., Dziubinski, M. et al. Comprehensive analysis of oncogenic effects of PIK3CA mutations in human mammary epithelial cells. Breast Cancer Res Treat 112, 217–227 (2008). https://doi.org/10.1007/s10549-007-9847-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-007-9847-6

Keywords

Navigation