Skip to main content

Advertisement

Log in

COUP-TFI modulates estrogen signaling and influences proliferation, survival and migration of breast cancer cells

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

We previously showed that COUP-TFI interacts with the Estrogen Receptor alpha (ERα) to recruit Extracellular signal Regulated Kinases (ERKs) in an Estradiol (E2)-independent manner, resulting in an enhancement of ERα transcriptional activity. However, the involvement of COUP-TFI in physiologically relevant functions of ERα, such as the mitogenic activity that E2 has on breast cancer cells, remains poorly understood. Here, we first showed that the amounts of COUP-TFI protein are higher in dedifferentiated mammary cell lines (MDA-MB-231) and tumor breast cells as compared to the differentiated MCF-7 cell line and normal breast cells. To evaluate the functional relevance of the COUP-TFI/ERα interplay in mammary cells, we generated MCF-7 cells that stably over-express COUP-TFI. We found that the over-expression of COUP-TFI enhances motility and invasiveness of MCF-7 cells. COUP-TFI also promotes the proliferation of MCF-7 cells through ERα-dependent mechanisms that target cell cycle progression and cell survival. To further investigate the mechanisms underlying these effects of COUP-TFI, we evaluated the expression of known E2-target genes in breast cancer, and found that COUP-TFI differentially regulated genes involved in cell proliferation, apoptosis, and migration/invasion. Notably, Cathepsin D (CTSD) transcript and protein levels were significantly higher in presence and absence of E2 in MCF-7 over-expressing COUP-TFI. Chromatin Immunoprecipitation assays showed that ERα, phospho-RNA Polymerase II, as well as p68 RNA Helicase, a phospho-Serine 118 dependent co-activator of ERα, were preferentially recruited onto the CTSD gene proximal promoter in COUP-TFI over-expressing cells. These results suggest that COUP-TFI selectively regulates the expression of endogenous E2-target genes and consequently modifies ERα positive mammary cells response to E2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sommer S, Fuqua SA (2001) Estrogen receptor and breast cancer. Semin Cancer Biol 11(5):339–352

    Article  PubMed  CAS  Google Scholar 

  2. Nilsson S, Makela S, Treuter E et al (2001) Mechanisms of estrogen action. Physiol Rev 81(4):1535–1565

    PubMed  CAS  Google Scholar 

  3. Safe S (2001) Transcriptional activation of genes by 17 beta-estradiol through estrogen receptor-Sp1 interactions. Vitam Horm 62:231–252

    Article  PubMed  CAS  Google Scholar 

  4. Klinge CM (2000) Estrogen receptor interaction with co-activators and co-repressors. Steroids 65(5):227–251

    Article  PubMed  CAS  Google Scholar 

  5. Endoh H, Maruyama K, Masuhiro Y et al (1999) Purification and identification of p68 RNA helicase acting as a transcriptional coactivator specific for the activation function 1 of human estrogen receptor alpha. Mol Cell Biol 19(8):5363–5372

    PubMed  CAS  Google Scholar 

  6. Watanabe M, Yanagisawa J, Kitagawa H et al (2001) A subfamily of RNA-binding DEAD-box proteins acts as an estrogen receptor alpha coactivator through the N-terminal activation domain (AF-1) with an RNA coactivator, SRA. Embo J 20(6):1341–1352

    Article  PubMed  CAS  Google Scholar 

  7. Gadducci A, Biglia N, Sismondi P et al (2005) Breast cancer and sex steroids: critical review of epidemiological, experimental and clinical investigations on etiopathogenesis, chemoprevention and endocrine treatment of breast cancer. Gynecol Endocrinol 20(6):343–360

    Article  PubMed  CAS  Google Scholar 

  8. Foster JS, Henley DC, Ahamed S et al (2001) Estrogens and cell-cycle regulation in breast cancer. Trends Endocrinol Metab 12(7):320–327

    Article  PubMed  CAS  Google Scholar 

  9. Gompel A, Somai S, Chaouat M et al (2000) Hormonal regulation of apoptosis in breast cells and tissues. Steroids 65(10–11):593–598

    Article  PubMed  CAS  Google Scholar 

  10. Osborne CK (1998) Steroid hormone receptors in breast cancer management. Breast Cancer Res Treat 51(3):227–238

    Article  PubMed  CAS  Google Scholar 

  11. Frasor J, Danes JM, Komm B et al (2003) Profiling of estrogen up- and down-regulated gene expression in human breast cancer cells: insights into gene networks and pathways underlying estrogenic control of proliferation and cell phenotype. Endocrinology 144(10):4562–4574

    Article  PubMed  CAS  Google Scholar 

  12. Deblois G, Giguere V (2003) Ligand-independent coactivation of ERalpha AF-1 by steroid receptor RNA activator (SRA) via MAPK activation. J Steroid Biochem Mol Biol 85(2–5):123–131

    Article  PubMed  CAS  Google Scholar 

  13. Métivier R, Gay FA, Hubner MR et al (2002) Formation of an hER alpha-COUP-TFI complex enhances hER alpha AF-1 through Ser118 phosphorylation by MAPK. Embo J 21(13):3443–3453

    Article  PubMed  Google Scholar 

  14. Burbach JP, Lopes da Silva S, Cox JJ et al (1994) Repression of estrogen-dependent stimulation of the oxytocin gene by chicken ovalbumin upstream promoter transcription factor I. J Biol Chem 269(21):15046–15053

    PubMed  CAS  Google Scholar 

  15. Liu Y, Yang N, Teng CT (1993) COUP-TF acts as a competitive repressor for estrogen receptor-mediated activation of the mouse lactoferrin gene. Mol Cell Biol 13(3):1836–1846

    PubMed  CAS  Google Scholar 

  16. Tsai SY, Tsai MJ (1997) Chick ovalbumin upstream promoter–transcription factors (COUP-TFs): coming of age. Endocr Rev 18(2):229–240

    Article  PubMed  Google Scholar 

  17. Pereira FA, Qiu Y, Zhou G et al (1999) The orphan nuclear receptor COUP-TFII is required for angiogenesis and heart development. Genes Dev 13(8):1037–1049

    Article  PubMed  CAS  Google Scholar 

  18. Pereira FA, Tsai MJ, Tsai SY (2000) COUP-TF orphan nuclear receptors in development and differentiation. Cell Mol Life Sci 57(10):1388–1398

    Article  PubMed  CAS  Google Scholar 

  19. Qiu Y, Pereira FA, DeMayo FJ et al (1997) Null mutation of mCOUP-TFI results in defects in morphogenesis of the glossopharyngeal ganglion, axonal projection, and arborization. Genes Dev 11(15):1925–1937

    Article  PubMed  CAS  Google Scholar 

  20. Kieback DG, Levi T, Kohlberger P et al (1996) Chicken ovalbumin upstream promoter-transcription factor (COUP-TF) expression in human endometrial cancer cell lines. Anticancer Res 16(6B):3371–3376

    PubMed  CAS  Google Scholar 

  21. Kieback DG, Runnebaum IB, Moebus VJ et al (1993) Chicken ovalbumin upstream promoter transcription factor (COUP-TF): an orphan steroid receptor with a specific pattern of differential expression in human ovarian cancer cell lines. Gynecol Oncol 51(2):167–170

    Article  PubMed  CAS  Google Scholar 

  22. Navab R, Gonzalez-Santos JM, Johnston MR et al (2004) Expression of chicken ovalbumin upstream promoter-transcription factor II enhances invasiveness of human lung carcinoma cells. Cancer Res 64(15):5097–5105

    Article  PubMed  CAS  Google Scholar 

  23. Merot Y, Metivier R, Penot G et al (2004) The relative contribution exerted by AF-1 and AF-2 transactivation functions in estrogen receptor alpha transcriptional activity depends upon the differentiation stage of the cell. J Biol Chem 279(25):26184–26191

    Article  PubMed  CAS  Google Scholar 

  24. Metivier R, Penot G, Hubner MR et al (2003) Estrogen receptor-alpha directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell 115(6):751–763

    Article  PubMed  CAS  Google Scholar 

  25. Keepers YP, Pizao PE, Peters GJ et al (1991) Comparison of the sulforhodamine B protein and tetrazolium (MTT) assays for in vitro chemosensitivity testing. Eur J Cancer 27(7):897–900

    Article  PubMed  CAS  Google Scholar 

  26. Lacroix M, Leclercq G (2004) Relevance of breast cancer cell lines as models for breast tumours: an update. Breast Cancer Res Treat 83(3):249–289

    Article  PubMed  CAS  Google Scholar 

  27. Klinge CM, Silver BF, Driscoll MD et al (1997) Chicken ovalbumin upstream promoter-transcription factor interacts with estrogen receptor, binds to estrogen response elements and half-sites, and inhibits estrogen-induced gene expression. J Biol Chem 272(50):31465–31474

    Article  PubMed  CAS  Google Scholar 

  28. Perry RR, Kang Y, Greaves B (1995) Effects of tamoxifen on growth and apoptosis of estrogen-dependent and -independent human breast cancer cells. Ann Surg Oncol 2(3):238–245

    Article  PubMed  CAS  Google Scholar 

  29. Platet N, Cathiard AM, Gleizes M et al (2004) Estrogens and their receptors in breast cancer progression: a dual role in cancer proliferation and invasion. Crit Rev Oncol Hematol 51(1):55–67

    Article  PubMed  Google Scholar 

  30. Platet N, Cunat S, Chalbos D et al (2000) Unliganded and liganded estrogen receptors protect against cancer invasion via different mechanisms. Mol Endocrinol 14(7):999–1009

    Article  PubMed  CAS  Google Scholar 

  31. Vincent-Salomon A, Thiery JP (2003) Host microenvironment in breast cancer development: epithelial-mesenchymal transition in breast cancer development. Breast Cancer Res 5(2):101–106

    Article  PubMed  CAS  Google Scholar 

  32. Adam F, Sourisseau T, Metivier R et al (2000) COUP-TFI (chicken ovalbumin upstream promoter-transcription factor I) regulates cell migration and axogenesis in differentiating P19 embryonal carcinoma cells. Mol Endocrinol 14(12):1918–1933

    Article  PubMed  CAS  Google Scholar 

  33. Garbett EA, Reed MW, Stephenson TJ et al (2000) Proteolysis in human breast cancer. Mol Pathol 53(2):99–106

    Article  PubMed  CAS  Google Scholar 

  34. Marshman E, Green KA, Flint DJ et al (2003) Insulin-like growth factor binding protein 5 and apoptosis in mammary epithelial cells. J Cell Sci 116(Pt 4):675–682

    Article  PubMed  CAS  Google Scholar 

  35. Williams TM, Medina F, Badano I et al (2004) Caveolin-1 gene disruption promotes mammary tumorigenesis and dramatically enhances lung metastasis in vivo. Role of Cav-1 in cell invasiveness and matrix metalloproteinase (MMP-2/9) secretion. J Biol Chem 279(49):51630–51646

    Article  PubMed  CAS  Google Scholar 

  36. Sparatore B, Patrone M, Passalacqua M et al (2005) Activation of A431 human carcinoma cell motility by extracellular high-mobility group box 1 protein and epidermal growth factor stimuli. Biochem J 389(Pt 1):215–221

    PubMed  CAS  Google Scholar 

  37. More E, Fellner T, Doppelmayr H et al (2003) Activation of the MAP kinase pathway induces chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) expression in human breast cancer cell lines. J Endocrinol 176(1):83–94

    Article  PubMed  CAS  Google Scholar 

  38. Nakshatri H, Mendonca MS, Bhat-Nakshatri P et al (2000) The orphan receptor COUP-TFII regulates G2/M progression of breast cancer cells by modulating the expression/activity of p21(WAF1/CIP1), cyclin D1, and cdk2. Biochem Biophys Res Commun 270(3):1144–1153

    Article  PubMed  CAS  Google Scholar 

  39. Lin B, Chen GQ, Xiao D et al (2000) Orphan receptor COUP-TF is required for induction of retinoic acid receptor beta, growth inhibition, and apoptosis by retinoic acid in cancer cells. Mol Cell Biol 20(3):957–970

    Article  PubMed  CAS  Google Scholar 

  40. Lannigan DA (2003) Estrogen receptor phosphorylation. Steroids 68(1):1–9

    Article  PubMed  CAS  Google Scholar 

  41. Rochette-Egly C (2003) Nuclear receptors: integration of multiple signalling pathways through phosphorylation. Cell Signal 15(4):355–366

    Article  PubMed  CAS  Google Scholar 

  42. Britton DJ, Hutcheson IR, Knowlden JM et al (2006) Bidirectional cross talk between ERalpha and EGFR signalling pathways regulates tamoxifen-resistant growth. Breast Cancer Res Treat 96(2):131–146

    Article  PubMed  CAS  Google Scholar 

  43. Bunone G, Briand PA, Miksicek RJ et al (1996) Activation of the unliganded estrogen receptor by EGF involves the MAP kinase pathway and direct phosphorylation. Embo J 15(9):2174–2183

    PubMed  CAS  Google Scholar 

  44. Fujita T, Kobayashi Y, Wada O et al (2003) Full activation of estrogen receptor alpha activation function-1 induces proliferation of breast cancer cells. J Biol Chem 278(29):26704–26714

    Article  PubMed  CAS  Google Scholar 

  45. Bailey P, Sartorelli V, Hamamori Y et al (1998) The orphan nuclear receptor, COUP-TF II, inhibits myogenesis by post-transcriptional regulation of MyoD function: COUP-TF II directly interacts with p300 and myoD. Nucleic Acids Res 26(23):5501–5510

    Article  PubMed  CAS  Google Scholar 

  46. Eubank DW, Duplus E, Williams SC et al (2001) Peroxisome proliferator-activated receptor gamma and chicken ovalbumin upstream promoter transcription factor II negatively regulate the phosphoenolpyruvate carboxykinase promoter via a common element. J Biol Chem 276(32):30561–30569

    Article  PubMed  CAS  Google Scholar 

  47. Rochefort H, Garcia M, Glondu M et al (2000) Cathepsin D in breast cancer: mechanisms and clinical applications, a 1999 overview. Clin Chim Acta 291(2):157–170

    Article  PubMed  CAS  Google Scholar 

  48. Hall JM, Korach KS (2003) Stromal cell-derived factor 1, a novel target of estrogen receptor action, mediates the mitogenic effects of estradiol in ovarian and breast cancer cells. Mol Endocrinol 17(5):792–803

    Article  PubMed  CAS  Google Scholar 

  49. Damiens E, El Yazidi I, Mazurier J et al (1999) Lactoferrin inhibits G1 cyclin-dependent kinases during growth arrest of human breast carcinoma cells. J Cell Biochem 74(3):486–498

    Article  PubMed  CAS  Google Scholar 

  50. Cassoni P, Sapino A, Marrocco T et al (2004) Oxytocin and oxytocin receptors in cancer cells and proliferation. J Neuroendocrinol 16(4):362–364

    Article  PubMed  CAS  Google Scholar 

  51. Le Goff P, Montano MM, Schodin DJ et al (1994) Phosphorylation of the human estrogen receptor. Identification of hormone-regulated sites and examination of their influence on transcriptional activity. J Biol Chem 269:4458–4466

    PubMed  CAS  Google Scholar 

  52. Giamarchi C, Solanas M, Chailleux C et al (1999) Chromatin structure of the regulatory regions of pS2 and cathepsin D genes in hormone-dependent and -independent breast cancer cell lines. Oncogene 18(2):533–541

    Article  PubMed  CAS  Google Scholar 

  53. Chalbos D, Philips A, Galtier F et al (1993) Synthetic antiestrogens modulate induction of pS2 and cathepsin-D messenger ribonucleic acid by growth factors and adenosine 3′,5′-monophosphate in MCF7 cells. Endocrinology 133(2):571–576

    Article  PubMed  CAS  Google Scholar 

  54. Wang F, Duan R, Chirgwin J et al (2000) Transcriptional activation of cathepsin D gene expression by growth factors. J Mol Endocrinol 24(2):193–202

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Pr. Jean Leveque for the initial discussions concerning immunohistochemistry analysis. This work was supported by a fellowship from the Ministère de l’Enseignement et de la Recherche (to F.L.D.) and funds from the Association pour la Recherche sur le Cancer (ARC; contract no. 4487), the CNRS and the University of Rennes I.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzad Pakdel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Dily, F., Métivier, R., Guéguen, MM. et al. COUP-TFI modulates estrogen signaling and influences proliferation, survival and migration of breast cancer cells. Breast Cancer Res Treat 110, 69–83 (2008). https://doi.org/10.1007/s10549-007-9693-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-007-9693-6

Keywords

Navigation