Skip to main content

Advertisement

Log in

Polymorphisms of the DNA polymerase β gene in breast cancer

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

DNA polymerase β (Polβ) provides most of the gap-filling synthesis at apurinic/apyrimidine sites of damaged DNA in the base excision repair pathway. Mutations in the gene encoding DNA polβ have been identified in various carcinomas. We performed a case–control study to test the association between two polymorphisms in the polβ gene: a Pro → Arg change at codon 242 (the Pro242Arg polymorphism) and a Lys → Met change at codon 289 (the Lys289Met polymorphism) and breast cancer risk and cancer progression. Genotypes were determined in DNA from peripheral blood lymphocytes of 150 breast cancer patients and 150 cancer-free, age-matched women (controls) by PCR-RFLP. A strong association between breast cancer occurrence and the Met/Met phenotype of the Lys289Met polymorphism [odds ratio (OR) 3.67; 95% confidence interval (CI) 1.87–7.56] and the Pro/Arg phenotype of the Pro242Lys polymorphism (OR 1.96; 95% CI 1.15–3.34) was found. Polymorphism–polymorphism interaction between the Met/Met phenotype of the Lys289Met and the Pro/Arg phenotype of the Pro242Arg variants increased the risk of breast cancer (OR 3.05; 95% CI 1.31–7.09). We did not observe any correlation between studied polymorphisms and breast cancer progression evaluated by node-metastasis, tumor size and Bloom–Richardson grading. In conclusion, Polβ may play a role in the breast carcinogenesis and the Lys289Met polymorphism of the polβ gene may be considered as an independent, early, molecular diagnostic marker in breast cancer. The Pro242Arg polymorphism may contribute to the carcinogenesis through the interaction with the Lys289Met and therefore may be regarded as a dependent, auxiliary marker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dufloth RM, Costa S, Schmitt F, Zeferino LC (2005) DNA repair gene polymorphisms and susceptibility to familial breast cancer in a group of patients from Campinas, Brazil. Genet Mol Res 4:771–782

    PubMed  CAS  Google Scholar 

  2. Garcia-Closas M, Egan KM, Newcomb PA, Brinton LA, Titus-Ernstoff L, Chanock S, Welch R, Lissowska J, Peplonska B, Szeszenia-Dabrowska N, Zatonski W, Bardin-Mikolajczak A, Struewing JP (2006) Polymorphisms in DNA double-strand break repair genes and risk of breast cancer: two population-based studies in USA and Poland, and meta-analyses. Hum Genet 119:376–388

    Article  PubMed  CAS  Google Scholar 

  3. Han S, Zhang HT, Wang Z, Xie Y, Tang R, Mao Y, Li Y (2006) DNA repair gene XRCC3 polymorphisms and cancer risk: a meta-analysis of 48 case–control studies. Eur J Hum Genet [Epub ahead of print]

  4. Zhang Y, Newcomb PA, Egan KM, Titus-Ernstoff L, Chanock S, Welch R, Brinton LA, Lissowska J, Bardin-Mikolajczak A, Peplonska B, Szeszenia-Dabrowska N, Zatonski W, Garcia-Closas M (2006) Genetic polymorphisms in base-excision repair pathway genes and risk of breast cancer. Cancer Epidemiol Biomarkers Prev 15:353–358

    Article  PubMed  CAS  Google Scholar 

  5. Poplawski T, Zadrozny M, Kolacinska A, Rykala J, Morawiec Z, Blasiak J (2005) Polymorphisms of the DNA mismatch repair gene HMSH2 in breast cancer occurrence and progression. Breast Cancer Res Treat 94:199–204

    Article  PubMed  CAS  Google Scholar 

  6. Sliwinski T, Krupa R, Majsterek I, Rykala J, Kolacinska A, Morawiec Z, Drzewoski J, Zadrozny M, Blasiak J (2005) Polymorphisms of the BRCA2 and RAD51 genes in breast cancer. Breast Cancer Res Treat 94:105–109

    Article  PubMed  CAS  Google Scholar 

  7. Lindahl T (2001) Keynote: past, present, and future aspects of base excision repair. Prog Nucleic Acid Res Mol Biol 68:xvii–xxx

    Article  PubMed  CAS  Google Scholar 

  8. Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362:709–715

    Article  PubMed  CAS  Google Scholar 

  9. Idriss HT, Al-Assar O, Wilson SH (2002) DNA polymerase beta. Int J Biochem Cell Biol 34:321–324

    Article  PubMed  CAS  Google Scholar 

  10. Wilson SH, Singhal RK (1998) Mammalian DNA repair and the cellular DNA polymerases. In: Nickoloff JA, Hoekstra MF (eds) DNA damage and repair. Humana, Clifton, pp. 161–180

    Chapter  Google Scholar 

  11. Sobol RW, Prasad R, Evenski A, Baker A, Yang XP, Horton JK, Wilson SH (2000) The lyase activity of the DNA repair protein beta-polymerase protects from DNA-damage-induced cytotoxicity. Nature 405:807–810

    Article  PubMed  CAS  Google Scholar 

  12. Matsumoto Y, Kim K (1995) Excision of deoxyribose phosphate residues by DNA polymerase beta during DNA repair. Science 269:699–702

    Article  PubMed  CAS  Google Scholar 

  13. Frosina G, Fortini P, Rossi O, Carrozzino F, Raspaglio G, Cox LS, Lane DP, Abbondandolo A, Dogliotti E (1996) Two pathways for base excision repair in mammalian cells. J Biol Chem 271:9573–9578

    Article  PubMed  CAS  Google Scholar 

  14. Kosa JL, Sweasy JB (1999) The E249K mutator mutant of DNA polymerase beta extends mispaired termini. J Biol Chem 274:35866–35872

    Article  PubMed  CAS  Google Scholar 

  15. Maitra M, Gudzelak A, Jr, Li SX, Matsumoto Y, Eckert KA, Jager J, Sweasy JB (2002) Threonine 79 is a hinge residue that governs the fidelity of DNA polymerase beta by helping to position the DNA within the active site. J Biol Chem 277:35550–35560

    Article  PubMed  CAS  Google Scholar 

  16. Shah AM, Li SX, Anderson KS, Sweasy JB (2001) Y265H mutator mutant of DNA polymerase beta. Proper teometric alignment is critical for fidelity. J Biol Chem 276:10824–10831

    Article  PubMed  CAS  Google Scholar 

  17. Beard WA, Osheroff WP, Prasad R, Sawaya MR, Jaju M, Wood TG, Kraut J, Kunkel TA, Wilson SH (1996) Enzyme–DNA interactions required for efficient nucleotide incorporation and discrimination in human DNA polymerase beta. J Biol Chem 271:12141–12144

    Article  PubMed  CAS  Google Scholar 

  18. Osheroff WP, Beard WA, Yin S, Wilson SH, Kunkel TA (2000) Minor groove interactions at the DNA polymerase beta active site modulate single-base deletion error rates. J Biol Chem 275:28033–28038

    PubMed  CAS  Google Scholar 

  19. Sweasy JB, Loeb L (1993) Detection and characterization of mammalian DNA polymerase β mutants by functional complementation in Escherichia coli. Proc Natl Acad Sci USA 90:4626–4630

    Article  PubMed  CAS  Google Scholar 

  20. Ali-Osman F, Berger MS, Rairkar A, Stein DE (1994) Enhanced repair of a cisplatin damaged reporter chloramphenicol-O-acetyltransferase gene and altered activities of DNA polymerases α and β, and DNA ligase in cells of a human malignant glioma following in vivo cisplatin therapy. J Cell Biochem 54:11–19

    Article  PubMed  CAS  Google Scholar 

  21. Plug AW, Clairmont CA, Sapi E, Ashley T, Sweasy JB (1997) Evidence for a role for DNA polymerase β in mammalian meiosis. Proc Natl Acad Sci USA 94:1327–1331

    Article  PubMed  CAS  Google Scholar 

  22. Miscia S, Di Baldassarre A, Alba Rana R, Di Peitro R, Cataldi A (1997) Engagement of DNA polymerases during apoptosis. Cell Prolif 30:325–340

    Article  PubMed  CAS  Google Scholar 

  23. Loeb LA (1998) Cancer cells exhibit a mutator phenotype. Adv Cancer Res 72:25–56

    Article  PubMed  CAS  Google Scholar 

  24. Shadan F, Villarreal L (1996) Potential role of DNA polymerase beta in gene therapy against cancer: a case for colorectal cancer. Med Hypotheses 47:1–9

    Article  PubMed  CAS  Google Scholar 

  25. Dobashi Y, Shuin T, Tsuruga H, Uemura H, Torigoe S, Kubota Y (1994) DNA polymerase beta gene mutation in human prostate cancer. Cancer Res 54:2827–2829

    PubMed  CAS  Google Scholar 

  26. Iwanaga A, Ouchida M, Miyazaki K, Hori K, Mukai T (1999) Functional mutation of DNA polymerase beta found in human gastric cancer-inability of the base excision repair in vitro. Mutat Res 435:121–128

    PubMed  CAS  Google Scholar 

  27. Wang L, Patel U, Ghosh L, Banerjee S (1992) DNA polymerase beta mutations in human colorectal cancer. Cancer Res 52:4824–4827

    PubMed  CAS  Google Scholar 

  28. Kubota Y, Murakami-Murofushi K, Shimada Y, Ogiu T, Oikawa T (1995) Reduced fidelity of DNA synthesis in cell extracts from chemically induced primary thymic lymphomas of mice. Cancer Res 55:3777–3780

    PubMed  CAS  Google Scholar 

  29. Bhattacharyya N, Chen HC, Grundfest-Broniatowski S, Banerjee S (1999) Alteration of hMSH2 and DNA polymerase beta genes in breast carcinomas and fibroadenomas. Biochem Biophys Res Commun 259:429–435

    Article  PubMed  CAS  Google Scholar 

  30. Wang L, Banerjee S (1995) Mutations in DNA polymerase β occur in breast, prostate, and colorectal cancer. Int J Oncol 6:459–463

    CAS  Google Scholar 

  31. Bhattacharyya N, Chen HC, Comhair S, Erzurum SC, Banerjee S (1999) Variant forms of DNA polymerase beta in primary lung carcinomas. DNA Cell Biol 8:549–554

    Article  Google Scholar 

  32. Kang D (2003) Genetic polymorphisms and cancer susceptibility in Korean women. J Biochem Mol Biol 36:28–34

    PubMed  CAS  Google Scholar 

  33. Goode EL, Ulrich CM, Potter JD (2002) Polymorphisms in DNA repair genes and associations with cancer risk. Cancer Epidemiol Biomarkers Prev 11:1513–1530

    PubMed  CAS  Google Scholar 

  34. Onay VU, Briollais L, Knight JA, Shi E, Wang Y, Wells S, Li H, Rajendram I, Andrulis IL, Ozcelik H (2006) SNP–SNP interactions in breast cancer susceptibility. BMC Cancer 6:114

    Article  PubMed  CAS  Google Scholar 

  35. Lippke JA, Strzempko MN, Raia FF, Simon SL, French CK (1987) Isolation of intact high-molecular-weight DNA by using guanidine isothiocyanate. Appl Environ Microbiol 53:2588–2589

    PubMed  CAS  Google Scholar 

  36. Lang T, Maitra M, Starcevic D, Li SX, Sweasy JB (2004) A DNA polymerase beta mutant from colon cancer cells induces mutations. Proc Natl Acad Sci USA 101:6074–6079

    Article  PubMed  CAS  Google Scholar 

  37. Macoska JA, Trybus TM, Sakr WA, Wolf MC, Benson PD, Powell IJ, Pontes JE (1994) Fluorescence in situ hybridization analysis of 8p allelic loss and chromosome 8 instability in human prostate cancer. Cancer Res 54:3824–3830

    PubMed  CAS  Google Scholar 

  38. Srivastava DK, Husain I, Arteaga CL, Wilson SH (1999) DNA polymerase beta expression differences in selected human tumors and cell lines. Carcinogenesis 20:1049–1054

    Article  PubMed  CAS  Google Scholar 

  39. Blasiak J, Arabski M, Krupa R, Wozniak K, Rykala J, Kolacinska A, Morawiec Z, Drzewoski J, Zadrozny M (2004) Basal, oxidative and alkylative DNA damage, DNA repair efficacy and mutagen sensitivity in breast cancer. Mutat Res 554:139–148

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants 505/363 (JB) and 505/396 (TS) from the University of Lodz and “Spoleczny Komitet Walki z Rakiem” Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janusz Blasiak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sliwinski, T., Ziemba, P., Morawiec, Z. et al. Polymorphisms of the DNA polymerase β gene in breast cancer. Breast Cancer Res Treat 103, 161–166 (2007). https://doi.org/10.1007/s10549-006-9357-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-006-9357-y

Keywords

Navigation