Skip to main content
Log in

Minimum-Norm Estimation of Motor Representations in Navigated TMS Mappings

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

An Erratum to this article was published on 06 September 2017

This article has been updated

Abstract

Navigated transcranial magnetic stimulation (nTMS) can be applied to locate and outline cortical motor representations. This may be important, e.g., when planning neurosurgery or focused nTMS therapy, or when assessing plastic changes during neurorehabilitation. Conventionally, a cortical location is considered to belong to the motor cortex if the maximum electric field (E-field) targeted there evokes a motor-evoked potential in a muscle. However, the cortex is affected by a broad E-field distribution, which tends to broaden estimates of representation areas by stimulating also the neighboring areas in addition to the maximum E-field location. Our aim was to improve the estimation of nTMS-based motor maps by taking into account the E-field distribution of the stimulation pulse. The effect of the E-field distribution was considered by calculating the minimum-norm estimate (MNE) of the motor representation area. We tested the method on simulated data and then applied it to recordings from six healthy volunteers and one stroke patient. We compared the motor representation areas obtained with the MNE method and a previously introduced interpolation method. The MNE hotspots and centers of gravity were close to those obtained with the interpolation method. The areas of the maps, however, depend on the thresholds used for outlining the areas. The MNE method may improve the definition of cortical motor areas, but its accuracy should be validated by comparing the results with maps obtained with direct cortical stimulation of the cortex where the E-field distribution can be better focused.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

  • 06 September 2017

    An erratum to this article has been published.

References

  • Awiszus F (2003) TMS and threshold hunting. Suppl to Clin Neurophysioly 56:13–23

    Article  Google Scholar 

  • Awiszus F, Borckardt JJ (2012) TMS Motor Threshold Assessment Tool 2.0 http://clinicalresearcher.org/software.htm. Accessed 2 June 2014

  • Bohning DE, He L, George MS, Epstein CM (2001) Deconvolution of transcranial magnetic stimulation (TMS) maps. J Neural Transm 108:35–52

    Article  CAS  PubMed  Google Scholar 

  • Borghetti D, Sartucci F, Petacchi E, Guzzetta A, Piras MF, Murri L, Cioni G (2008) Transcranial magnetic stimulation mapping: a model based on spline interpolation. Brain Res Bull 77:143–148

    Article  CAS  PubMed  Google Scholar 

  • Bungert A, Antunes A, Espenhahn S, Thielscher A (2016) Where does TMS stimulate the motor cortex? Combining electrophysiological measurements and realistic field estimates to reveal the affected cortex position. Cereb Cortex 1–12

  • Danner N, Julkunen P, Könönen M, Säisänen L, Nurkkala J, Karhu J (2008) Navigated transcranial magnetic stimulation and computed electric field strength reduce stimulator-dependent differences in the motor threshold. J Neurosci Methods 174:116–122

    Article  PubMed  Google Scholar 

  • Devanne H, Lavoie BA, Capaday C (1997) Input-output properties and gain changes in the human corticospinal pathway. Exp Brain Res 114:329–338

    Article  CAS  PubMed  Google Scholar 

  • Fox PT, Narayana S, Tandon N, Sandoval H, Fox SP, Kochunov P, Lancaster JL (2004) Column-based model of electric field excitation of cerebral cortex. Hum Brain Mapp 22:1–14

    Article  PubMed  Google Scholar 

  • Goetz SM, Luber B, Lisanby SH, Peterchev AV (2014) A novel model incorporating two variability sources for describing motor evoked potentials. Brain Stimul 7:541–552

    Article  PubMed  PubMed Central  Google Scholar 

  • Hämäläinen MS, Ilmoniemi RJ (1994) Interpreting magnetic fields of the brain: minimum norm estimates. Med Biol Eng Comput 32:35–42

    Article  PubMed  Google Scholar 

  • Heald A, Bates D, Cartlidge NEF, French JM, Miller S (1993) Longitudinal study of central motor conduction time following stroke: 2. Central motor conduction measured within 72 h after stroke as a predictor of functional outcome at 12 months. Brain 116:1371–1385

    Article  PubMed  Google Scholar 

  • Ilmoniemi RJ (2009) The triangle phantom in magnetoencephalography. J Jpn Biomagn Bioelectromagn Soc 22:44–45

    Google Scholar 

  • Ilmoniemi RJ, Ruohonen J, Karhu J (1999) Transcranial magnetic stimulation—a new tool for functional imaging of the brain. Crit Rev Biomed Eng 27:241–284

    CAS  PubMed  Google Scholar 

  • Jang SH, Ahn SH, Sakong J, Byun WM, Choi BY, Chang CH, Bai D, Son SM (2010) Comparison of TMS and DTT for predicting motor outcome in intracerebral hemorrhage. J Neurol Sci 290:107–111

    Article  PubMed  Google Scholar 

  • Julkunen P (2014) Methods for estimating cortical motor representation size and location in navigated transcranial magnetic stimulation. J Neurosci Methods 232:125–133

    Article  PubMed  Google Scholar 

  • Julkunen P, Säisänen L, Danner N, Awiszus F, Könönen M (2012) Within-subject effect of coil-to-cortex distance on cortical electric field threshold and motor evoked potentials in transcranial magnetic stimulation. J Neurosci Methods 206:158–164

    Article  PubMed  Google Scholar 

  • Jussen D, Zdunczyk A, Schmidt S, Rösler J, Buchert R, Julkunen P, Karhu J, Brandt S, Picht T, Vajkoczy P (2016) Motor plasticity after extra-intracranial bypass surgery in occlusive cerebrovascular disease. Neurology 87:27–35

    Article  PubMed  Google Scholar 

  • Kallioniemi E, Julkunen P (2016) Alternative stimulation intensities for mapping cortical motor area with navigated TMS. Brain Topogr 29:395–404

    Article  PubMed  Google Scholar 

  • Kallioniemi E, Pitkänen M, Säisänen L, Julkunen P (2015) Onset latency of motor evoked potentials in motor cortical mapping with neuronavigated transcranial magnetic stimulation. Open Neurol J 9:62–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liepert J, Bauder H, Miltner WHR, Taub E, Weiller C (2000) Treatment-induced cortical reorganization after stroke in humans. Stroke 31:1210–1216

    Article  CAS  PubMed  Google Scholar 

  • Malcolm MP, Triggs WJ, Light KE, Shechtman O, Khandekar G, Gonzalez Rothi LJ (2006) Reliability of motor cortex transcranial magnetic stimulation in four muscle representations. Clin Neurophysiol 117:1037–1046

    Article  CAS  PubMed  Google Scholar 

  • Matthäus L, Trillenberg P, Fadini T, Finke M, Schweikard A (2008) Brain mapping with transcranial magnetic stimulation using a refined correlation ratio and Kendall’s τ. Stat Med 27:5252–5270

    Article  PubMed  Google Scholar 

  • Nieminen JO, Koponen LM, Ilmoniemi RJ (2015) Experimental characterization of the electric field distribution induced by TMS devices. Brain Stimul 8:582–589

    Article  PubMed  Google Scholar 

  • Nummenmaa A, Stenroos M, Ilmoniemi RJ, Okada YC, Hämäläinen MS, Raij T (2013) Comparison of spherical and realistically shaped boundary element head models for transcranial magnetic stimulation navigation. Clin Neurophysiol 124:1995–2007

    Article  PubMed  PubMed Central  Google Scholar 

  • Numminen J, Ahlfors S, Ilmoniemi R, Montonen J, Nenonen J (1995) Transformation of multichannel magnetocardiographic signals to standard grid form. IEEE Trans Biomed Eng 42:72–78

    Article  CAS  PubMed  Google Scholar 

  • Opitz A, Legon W, Rowlands A, Bickel WK, Paulus W, Tyler WJ (2013) Physiological observations validate finite element models for estimating subject-specific electric field distributions induced by transcranial magnetic stimulation of the human motor cortex. NeuroImage 81:253–264

    Article  PubMed  Google Scholar 

  • Opitz A, Zafar N, Bockermann V, Rohde V, Paulus W (2014) Validating computationally predicted TMS stimulation areas using direct electrical stimulation in patients with brain tumors near precentral regions. NeuroImage 4:500–507

    Article  PubMed  PubMed Central  Google Scholar 

  • Paiva WS, Fonoff ET, Marcolin MA, Cabrera HN, Teixeira MJ (2012) Cortical mapping with navigated transcranial magnetic stimulation in low-grade glioma surgery. Neuropsychiatr Dis Treat 8:197–201

    Article  PubMed  PubMed Central  Google Scholar 

  • Parker RL (1977) Understanding inverse theory. Annu Rev Earth Planet Sci 5:35–64

    Article  Google Scholar 

  • Picht T, Schmidt S, Brandt S, Frey D, Hannula H, Neuvonen T, Karhu J, Vajkoczy P, Suess O (2011) Preoperative functional mapping for rolandic brain tumor surgery: comparison of navigated transcranial magnetic stimulation to direct cortical stimulation. Neurosurgery 69:581–589

    Article  PubMed  Google Scholar 

  • Picht T, Krieg SM, Sollmann N, Rösler J, Niraula B, Neuvonen T, Savolainen P, Lioumis P, Mäkelä JP, Deletis V, Meyer B, Vajkoczy P, Ringel F (2013) A comparison of language mapping by preoperative navigated transcranial magnetic stimulation and direct cortical stimulation during awake surgery. Neurosurgery 72:808–819

    Article  PubMed  Google Scholar 

  • Pitkänen M, Kallioniemi E, Julkunen P (2015) Extent and location of the excitatory and inhibitory cortical hand representation maps: a navigated transcranial magnetic stimulation study. Brain Topogr 28:657–665

    Article  PubMed  Google Scholar 

  • Raffin E, Pellegrino G, Di Lazzaro V, Thielscher A, Siebner HR (2015) Bringing transcranial mapping into shape: sulcus-aligned mapping captures motor somatotopy in human primary motor hand area. NeuroImage 120:164–175

    Article  PubMed  Google Scholar 

  • Rossini PM, Burke D, Chen R, Cohen LG, Daskalakis Z, Di Iorio R, Di Lazzaro V, Ferreri F, Fitzgerald PB, George MS, Hallett M, Lefaucheur JP, Langguth B, Matsumoto H, Miniussi C, Nitsche MA, Pascual-Leone A, Paulus W, Rossi S et al (2015) Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin Neurophysiol 126:1071–1107

    Article  CAS  PubMed  Google Scholar 

  • Rothwell JC, Hallett M, Berardelli A, Eisen A, Rossini P, Paulus W (1999) Magnetic stimulation: motor evoked potentials. Electroencephalogr Clin Neurophysiol Suppl 52:97–103

    CAS  PubMed  Google Scholar 

  • Säisänen L, Julkunen P, Niskanen E, Danner N, Hukkanen T, Lohioja T, Nurkkala J, Mervaala E, Karhu J, Könönen M (2008) Motor potentials evoked by navigated transcranial magnetic stimulation in healthy subjects. J Clin Neurophysiol 25:367–372

    Article  PubMed  Google Scholar 

  • Sarvas J (1987) Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. Phys Med Biol 32:11–22

    Article  CAS  PubMed  Google Scholar 

  • Thickbroom GW, Sammut R, Mastaglia FL (1998) Magnetic stimulation mapping of motor cortex: factors contributing to map area. Electroencephalogr Clin Neurophysiol 109:79–84

    Article  CAS  PubMed  Google Scholar 

  • Thielscher A, Kammer T (2002) Linking physics with physiology in TMS: a sphere field model to determine the cortical stimulation site in TMS. NeuroImage 17:1117–1130

    Article  PubMed  Google Scholar 

  • Thielscher A, Wichmann FA (2009) Determining the cortical target of transcranial magnetic stimulation. NeuroImage 47:1319–1330

    Article  CAS  PubMed  Google Scholar 

  • Traversa R, Cicinelli P, Bassi A, Rossini PM, Bernardi G (1997) Mapping of motor cortical reorganization after stroke: a brain simulation study with focal magnetic pulses. Stroke 28:110–117

    Article  CAS  PubMed  Google Scholar 

  • Vitikainen A-M, Salli E, Lioumis P, Mäkelä JP, Metsähonkala L (2013) Applicability of nTMS in locating the motor cortical representation areas in patients with epilepsy. Acta Neurochir 155:507–518

    Article  PubMed  Google Scholar 

  • Wassermann EM, McShane LM, Hallett M, Cohen LG (1992) Noninvasive mapping of muscle representations in human motor cortex. Electroencephalogr Clin Neurophysiol 85:1–8

    Article  CAS  PubMed  Google Scholar 

  • Wassermann EM, Pascual-Leone A, Valls-Solé J, Toro C, Cohen LG, Hallett M (1993) Topography of the inhibitory and excitatory responses to transcranial magnetic stimulation in a hand muscle. Electroencephalogr Clin Neurophysiol 89:424–433

    Article  CAS  PubMed  Google Scholar 

  • Wilson SA, Thickbroom GW, Mastaglia FL (1993) Topography of excitatory and inhibitory muscle responses evoked by transcranial magnetic stimulation in the human motor cortex. Neurosci Lett 154:52–56

    Article  CAS  PubMed  Google Scholar 

  • Wolf SL, Butler AJ, Campana GI, Parris TA, Struys DM, Weinstein SR, Weiss P (2004) Intra-subject reliability of parameters contributing to maps generated by transcranial magnetic stimulation in able-bodied adults. Clin Neurophysiol 115:1740–1747

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The study was funded by the State Research Funding (Research Committee of the Kuopio University Hospital Catchment Area, projects 5041730 and 5041747, Kuopio, Finland); Finnish Cultural Foundation, Helsinki, Finland; Cancer Society of Finland, Helsinki, Finland; Päivikki and Sakari Sohlberg Foundation, Helsinki, Finland; Academy of Finland (Decisions Nos. 255347, 265680, and 294625), Helsinki, Finland; Russian Academic Excellence Project ‘5-100’, RFBR Grant (No. 16-04-01883) and Skolkovo personal grant “Umnik”. The funding sources had no involvement in the study design, in the collection, analysis and interpretation of data, in the writing of the report, or in the decision to submit the article for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minna Pitkänen.

Ethics declarations

Conflict of interest

Petro Julkunen and Jaakko O. Nieminen have received unrelated consulting fees from Nexstim Plc, Elisa Kallioniemi has received unrelated travel support from Nexstim Plc, and Risto J. Ilmoniemi is an advisor and a minority shareholder of the company. The other authors declare no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

An erratum to this article is available at https://doi.org/10.1007/s10548-017-0587-6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pitkänen, M., Kallioniemi, E., Julkunen, P. et al. Minimum-Norm Estimation of Motor Representations in Navigated TMS Mappings. Brain Topogr 30, 711–722 (2017). https://doi.org/10.1007/s10548-017-0577-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-017-0577-8

Keywords

Navigation