Skip to main content

Navigated Transcranial Magnetic Stimulation: Principles and Protocol for Mapping the Motor Cortex

  • Protocol
  • First Online:
Transcranial Magnetic Stimulation

Part of the book series: Neuromethods ((NM,volume 89))

Abstract

Transcranial magnetic stimulation (TMS) is a unique method for studying the human brain. Whereas the majority of imaging tools detect and map all the brain areas that participate during a given task (both primary and secondary network activations), TMS, when used to evoke a measurable physiological response, maps only those areas that are mandatory for the observed reaction. As such, TMS is particularly suitable for mapping cortical motor areas and for assessing the functional status of the motor tracts, both in normal subjects and in patients. In this chapter, we explore the physical and mechanistic background of using TMS to map the motor cortex. In addition, we outline a detailed protocol for mapping the cortical representation of various muscles—a protocol which can be used in basic research or as part of a clinical diagnostic or treatment procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Keller SS, Highley JR, Garcia-Finana M, Sluming V, Rezaie R, Roberts N (2007) Sulcal variability, stereological measurement and asymmetry of Broca’s area on MR images. J Anat 211(4):534–555

    PubMed Central  PubMed  Google Scholar 

  2. Ravazzani P, Ruohonen J, Grandori F, Tognola G (1996) Magnetic stimulation of the nervous system: induced electric field in unbounded, semi-infinite, spherical, and cylindrical media. Ann Biomed Eng 24:606–616

    Article  CAS  PubMed  Google Scholar 

  3. Picht T, Schmidt S, Brandt S, Frey D, Hannula H, Neuvonen T, Karhu J, Vajkoczy P, Suess O (2011) Preoperative functional mapping for rolandic brain tumor surgery: comparison of navigated transcranial magnetic stimulation to direct cortical stimulation. Neurosurgery 69(3):581–588, discussion 588

    Article  PubMed  Google Scholar 

  4. Forster MT, Hattingen E, Senft C, Gasser T, Seifert V, Szelényi A (2011) Navigated transcranial magnetic stimulation and functional magnetic resonance imaging—advanced adjuncts in preoperative planning for central region tumors. Neurosurgery 68(5):1317–1324, discussion 1324–5

    PubMed  Google Scholar 

  5. Ruohonen J, Ilmoniemi RJ (2005) Basic physics and design of TMS devices and coils. In: Hallett M, Chokroverty S (eds) Magnetic stimulation in clinical neurophysiology. Butterworth, Philadelphia

    Google Scholar 

  6. Hämäläinen MS, Sarvas J (1987) Feasibility of the homogeneous head model in the interpretation of neuromagnetic fields. Phys Med Biol 32(1):91–97

    Article  PubMed  Google Scholar 

  7. Day BL, Dressler D, Maertens de Noordhout A, Marsden CD, Nakashima K, Rothwell JC, Thompson PD (1989) Electric and magnetic stimulation of human motor cortex: surface EMG and single motor unit responses. J Physiol 412:449–473

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Ranck JB Jr (1975) Which elements are excited in electrical stimulations of mammalian central nervous system: a review. Brain Res 98:417–440

    Article  PubMed  Google Scholar 

  9. Rushton WA (1927) Effect upon the threshold for nervous excitation of the length of nerve exposed and the angle between current and nerve. J Physiol 63:357–377

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Mills KR, Boniface SJ, Schubert M (1991) Origin of the secondary increase in firing probability of human motor neurons following transcranial magnetic stimulation. Studies in healthy subjects, type I hereditary motor and sensory neuropathy and multiple sclerosis. Brain 114(Pt 6):2451–2463

    Article  PubMed  Google Scholar 

  11. Brasil-Neto JP, McShane LM, Fuhr P, Hallett M, Cohen LG (1992) Topographic mapping of the human motor cortex with magnetic stimulation: factors affecting accuracy and reproducibility. Electroencephalogr Clin Neurophysiol 85:9–16

    Article  CAS  PubMed  Google Scholar 

  12. Amassian VE, Eberle L, Maccabee PJ, Cracco RQ (1992) Modelling magnetic coil excitation of human cerebral cortex with a peripheral nerve submersed in a brain shaped volume conductor: the significance of fiber-bending excitation. Electroencephalogr Clin Neurophysiol 77:390–401

    Article  Google Scholar 

  13. Broca P (1888) Mémoires d’anthropologie. Reinwald, Paris

    Google Scholar 

  14. Yousry TA, Schmid UD, Alkadhi H, Schmidt D, Peraud A, Buettner A, Winkler P (1997) Localization of the motor hand area to a knob on the precentral gyrus. A new landmark. Brain 120(Pt 1):141–157

    Article  PubMed  Google Scholar 

  15. White LE, Andrews TJ, Hulette C, Richards A, Groelle M, Paydarfar J, Purves D (1997) Structure of the human sensorimotor system. I: morphology and cytoarchitecture of the central sulcus. Cereb Cortex 7:18–30

    Article  CAS  PubMed  Google Scholar 

  16. Boling W, Olivier A, Bittar RG, Reutens D (1999) Localization of hand motor activation in Broca’s pli de passage moyen. J Neurosurg 91:903–910

    Article  CAS  PubMed  Google Scholar 

  17. Danner N, Julkunen P, Könönen M, Säisänen L, Nurkkala J, Karhu J (2008) Navigated transcranial magnetic stimulation and computed electric field strength reduce stimulator-dependent differences in the motor threshold. J Neurosci Methods 174(1):116–122

    Article  PubMed  Google Scholar 

  18. Teitti S, Määttä S, Säisänen L, Könönen M, Vanninen R, Hannula H, Mervaala E, Karhu J (2008) Non-primary motor areas in the human frontal lobe are connected directly to hand muscles. Neuroimage 40:1243–1250

    Article  CAS  PubMed  Google Scholar 

  19. Säisänen L, Julkunen P, Niskanen E, Danner N, Hukkanen T, Lohioja T, Nurkkala J, Mervaala E, Karhu J, Könönen M (2008) Motor potentials evoked by navigated transcranial magnetic stimulation in healthy subjects. J Clin Neurophysiol 25(6):367–372 doi: 10.1097/WNP.0b013e31818e7944

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jari Karhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Karhu, J., Hannula, H., Laine, J., Ruohonen, J. (2014). Navigated Transcranial Magnetic Stimulation: Principles and Protocol for Mapping the Motor Cortex. In: Rotenberg, A., Horvath, J., Pascual-Leone, A. (eds) Transcranial Magnetic Stimulation. Neuromethods, vol 89. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0879-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0879-0_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0878-3

  • Online ISBN: 978-1-4939-0879-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics