Skip to main content
Log in

The Relation between Infant Covert Orienting, Sustained Attention and Brain Activity

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

This study used measures of event-related potentials (ERPs) and cortical source analysis to examine the effect of covert orienting and sustained attention on 3- and 4.5-month-old infants’ brain activity in a spatial cueing paradigm. Cortical source analysis was conducted with current density reconstruction using realistic head models created from age-appropriate infant MRIs. The validity effect was found in the P1 ERP component that was greater for valid than neutral trials in the electrodes contralateral to the visual targets when the stimulus onset asynchrony (SOA) was short. Cortical source analysis revealed greater current density amplitude around the P1 peak latency in the contralateral inferior occipital and ventral temporal regions for valid than neutral and invalid trials. The processing cost effect was found in the N1 ERP component that was greater for neutral than invalid trials in the short SOA condition. This processing cost effect was also shown in the current density amplitude around the N1 peak latency in the contralateral inferior and middle occipital and middle and superior temporal regions. Infant sustained attention was found to modulate infants’ brain responses in covert orienting by enhancing the P1 ERP responses and current density amplitude in their cortical sources during sustained attention. These findings suggest that the neural mechanisms that underpin covert orienting already exist in 3- to 4.5-month-old, and they could be facilitated by infant sustained attention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Amso D, Johnson SP (2005) Selection and inhibition in infancy: evidence from the spatial negative priming paradigm. Cognition 95(2):B27–B36. doi:10.1016/j.cognition.2004.08.006

    Article  PubMed  Google Scholar 

  • Amso D, Johnson SP (2008) Development of visual selection in 3-to 9-month-olds: evidence from saccades to previously ignored locations. Infancy 13(6):675–686. doi:10.1080/15250000802459060

    Article  PubMed  PubMed Central  Google Scholar 

  • Clark VP, Fan S, Hillyard SA (1995) Identification of early visual evoked potential generators by retinotopic and topographic analyses. Hum Brain Mapp 2(3):170–187

    Article  Google Scholar 

  • Colombo J (2001) The development of visual attention in infancy. Annu Rev Psychol 52:337–367. doi:10.1146/annurev.psych.52.1.337

    Article  CAS  PubMed  Google Scholar 

  • Corbetta M, Tansy AP, Stanley CM, Astafiev SV, Snyder AZ, Shulman GL (2005) A functional MRI study of preparatory signals for spatial location and objects. Neuropsychologia 43(14):2041–2056

  • Courage ML, Reynolds GD, Richards JE (2006) Infants’ attention to patterned stimuli: developmental change from 3 to 12 months of age. Child Dev 77(3):680–695. doi:10.1111/j.1467-8624.2006.00897.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Csibra G, Tucker LA, Johnson MH (1998) Neural correlates of saccade planning in infants: a high-density ERP study. Int J Psychophysiol 29(2):201–215. doi:10.1016/S0167-8760(98)00016-6

    Article  CAS  PubMed  Google Scholar 

  • Csibra G, Tucker LA, Johnson MH (2001) Differential frontal cortex activation before anticipatory and reactive saccades in infants. Infancy 2(2):159–174. doi:10.1207/S15327078in0202_3

    Article  Google Scholar 

  • Daum MM, Gredeback G (2011) The development of grasping comprehension in infancy: covert shifts of attention caused by referential actions. Exp Brain Res 208(2):297–307. doi:10.1007/s00221-010-2479-9

    Article  PubMed  Google Scholar 

  • DeBoer T, Scott LS, Nelson CA (2007) Methods for acquiring and analyzing infant event-related potentials. In: De Haan M (ed) Infant EEG and Event-related Potentials. Psychology Press, London, pp 5–37

    Google Scholar 

  • Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134(1):9–21. doi:10.1016/j.jneumeth.2003.10.009

    Article  PubMed  Google Scholar 

  • Di Russo F, Martínez A, Sereno MI, Pitzalis S, Hillyard SA (2002) Cortical sources of the early components of the visual evoked potential. Hum Brain Mapp 15(2):95–111

  • Farroni T, Massaccesi S, Pividori D, Johnson MH (2004) Gaze following in newborns. Infancy 5(1):39–60. doi:10.1207/s15327078in0501_2

    Article  Google Scholar 

  • Fillmore PT, Richards JE, Phillips-Meek MC, Cryer A, Stevens M (2015) Stereotaxic magnetic resonance imaging brain atlases for infants from 3 to 12 months. Dev Neurosci 37(6):515–532. doi:10.1159/000438749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu SM, Zinni M, Squire PN, Kumar R, Caggiano DM, Parasuraman R (2008) When and where perceptual load interacts with voluntary visuospatial attention: an event-related potential and dipole modeling study. Neuroimage 39(3):1345–1355. doi:10.1016/j.neuroimage.2007.09.068

    Article  PubMed  Google Scholar 

  • Greenhouse SW, Geisser S (1959) On methods in the analysis of profile data. Psychometrika 24:95–112

    Article  Google Scholar 

  • Guy MW, Zieber N, Richards JE (2016) The cortical development of specialized face processing in infancy. Child Dev. doi:10.1111/cdev.12543

    PubMed  Google Scholar 

  • Haith MM, Hazan C, Goodman GS (1988) Expectation and anticipation of dynamic visual events by 3.5-month-old babies. Child Dev 59:467–479

    Article  CAS  PubMed  Google Scholar 

  • Hamalainen JA, Ortiz-Mantilla S, Benasich AA (2011) Source localization of event-related potentials to pitch change mapped onto age-appropriate MRIs at 6 months of age. Neuroimage 54(3):1910–1918. doi:10.1016/j.neuroimage.2010.10.016

    Article  PubMed  Google Scholar 

  • Hayden A, Bhatt RS, Kangas A, Zieber N, Joseph JE (2012) Race-based perceptual asymmetry in face processing is evident early in life. Infancy 17(5):578–590. doi:10.1111/j.1532-7078.2011.00098.x

    Article  Google Scholar 

  • Hillyard SA, Mangun GR, Woldroff MG, Luck SJ (1995) Neural systems mediating selective attention. In: Gazzaniga MS (ed) Cognitive neurosciences. MIT, Cambridge, pp 665–682

    Google Scholar 

  • Hood BM (1993) Inhibition of return produced by covert shifts of visual-attention in 6-month-old infants. Infant Behav Dev 16(2):245–254. doi:10.1016/0163-6383(93)80020-9

    Article  Google Scholar 

  • Hood BM (1995) Shifts of visual attention in the human infant: a neuroscientific approach. Adv Infancy Res 9:163–216

    Google Scholar 

  • Hunter SK, Richards JE (2003) Peripheral stimulus localization by 5-to 14-week-old infants during phases of attention. Infancy 4(1):1–25. doi:10.1207/S15327078in0401_1

    Article  PubMed  PubMed Central  Google Scholar 

  • Huynh H, Feldt LS (1976) Estimation of the Box correction for degrees of freedom from sample data in randomised block and split-plot designs. J Educ Stat 1:69–82

    Article  Google Scholar 

  • Johnson MH, Tucker LA (1996) The development and temporal dynamics of spatial orienting in infants. J Exp Child Psychol 63(1):171–188. doi:10.1006/jecp.1996.0046

    Article  CAS  PubMed  Google Scholar 

  • Johnson MH, Posner MI, Rothbart MK (1994) Facilitation of saccades toward a covertly attended location in early infancy. Psychol Sci 5(2):90–93. doi:10.1111/j.1467-9280.1994.tb00636.x

    Article  Google Scholar 

  • Johnson MH, de Haan M, Oliver A, Smith W, Hatzakis H, Tucker LA, Csibra G (2001) Recording and analyzing high-density event-related potentials with infants using the geodesic sensor net. Dev Neuropsychol 19(3):295–323. doi:10.1207/S15326942dn1903_4

    Article  CAS  PubMed  Google Scholar 

  • Kuefner D, de Heering A, Jacques C, Palmero-Soler E, Rossion B (2010) Early visually evoked electrophysiological responses over the human brain (P1, N170) show stable patterns of face-sensitivity from 4 years to adulthood. Front Hum Neurosci 3:67. doi:10.3389/neuro.09.067.2009

    Article  PubMed  PubMed Central  Google Scholar 

  • Lecoutre B (1991) A correction for the ε approximate test in repeated measures designs with two or more independent groups. J Educ Stat 16:371–372

    Article  Google Scholar 

  • Lopez-Calderon J, Luck SJ (2014) ERPLAB: an open-source toolbox for the analysis of event related potentials. Front Hum Neurosci 8:213. doi:10.3389/Fnhum.2014.00213

    Article  PubMed  PubMed Central  Google Scholar 

  • Mallin BM, Richards JE (2012) Peripheral stimulus localization by infants of moving stimuli on complex backgrounds. Infancy 17(6):692–714. doi:10.1111/j.1532-7078.2011.00109.x

    Article  PubMed  Google Scholar 

  • Mangun GR, Hillyard SA (1991) modulations of sensory-evoked brain potentials indicate changes in perceptual processing during visual spatial priming. J Exp Psychol Hum Percept Perform 17(4):1057–1074. doi:10.1037//0096-1523.17.4.1057

    Article  CAS  PubMed  Google Scholar 

  • Markant J, Amso D (2013) Selective memories: infants’ encoding is enhanced in selection via suppression. Dev Sci 16(6):926–940. doi:10.1111/Desc.12084

    PubMed  PubMed Central  Google Scholar 

  • Markant J, Oakes LM, Amso D (2015a) Visual selective attention biases contribute to the other- race effect among 9-month-old infants. Dev Psychobiol. doi:10.1002/dev.21375

    PubMed  Google Scholar 

  • Markant J, Worden MS, Amso D (2015b) Not all attention orienting is created equal: recognition memory is enhanced when attention orienting involves distractor suppression. Neurobiol Learn Mem 120:28–40

    Article  PubMed  PubMed Central  Google Scholar 

  • Martinez A, Anllo-Vento L, Sereno MI, Frank LR, Buxton RB, Dubowitz DJ, Hillyard SA (1999) Involvement of striate and extrastriate visual cortical areas in spatial attention. Nat Neurosci 2(4):364–369

    Article  CAS  PubMed  Google Scholar 

  • Martinez A, DiRusso F, Anllo-Vento L, Sereno MI, Buxton RB, Hillyard SA (2001) Putting spatial attention on the map: timing and localization of stimulus selection processes in striate and extrastriate visual areas. Vision Res 41(10–11):1437–1457. doi:10.1016/S0042-6989(00)00267-4

    Article  CAS  PubMed  Google Scholar 

  • McCleery JP, Richards JE (2012) Comparing realistic head models for cortical source localization of infant event-related potentials. Poster presented at the International Conference on Infant Studies, Minneapolis

  • Michel CM, Murray MM, Lantz G, Gonzalez S, Spinelli L, de Peralta RG (2004) EEG source imaging. Clin Neurophysiol 115(10):2195–2222. doi:10.1016/j.clinph.2004.06.001

    Article  PubMed  Google Scholar 

  • Munneke J, Heslenfeld DJ, Theeuwes J (2008) Directing attention to a location in space results in retinotopic activation in primary visual cortex. Brain Res 1222:184–191. doi:10.1016/j.brainres.2008.05.039

    Article  CAS  PubMed  Google Scholar 

  • Oostenveld R, Fries P, Maris E, Schoffelen JM (2011) FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci. doi:10.1155/2011/156869

  • Ortiz-Mantilla S, Hamalainen JA, Benasich AA (2012) Time course of ERP generators to syllables in infants: a source localization study using age-appropriate brain templates. Neuroimage 59(4):3275–3287. doi:10.1016/j.neuroimage.2011.11.048

    Article  PubMed  Google Scholar 

  • Pascual-Marqui RD (2007) Discrete, 3D distributed, linear imaging methods of electric neuronal activity. Part 1: exact, zero error localization. arXiv:0710.3341

  • Pascual-Marqui RD, Lehmann D, Koukkou M, Kochi K, Anderer P, Saletu B, Tanaka H, Hirata K, John ER, Prichep L, Biscay-Lirio R, Kinoshita T (2011) Assessing interactions in the brain with exact low-resolution electromagnetic tomography. Philos Trans A Math Phys Eng Sci 369(1952):3768–3784

  • Pempek TA, Kirkorian HL, Richards JE, Anderson DR, Lund AF, Stevens M (2010) Video comprehensibility and attention in very young children. Dev Psychol 46(5):1283–1293. doi:10.1037/A0020614

    Article  PubMed  PubMed Central  Google Scholar 

  • Peykarjou S, Westerlund A, Cassia VM, Kuefner D, Nelson CA (2013) The neural correlates of processing newborn and adult faces in 3-year-old children. Dev Sci 16(6):905–914. doi:10.1111/desc.12063

    PubMed  PubMed Central  Google Scholar 

  • Posner MI (1980) Orienting of attention. Quart J Exp Psychol 32:3–25. doi:10.1080/00335558008248231

    Article  CAS  Google Scholar 

  • Reid VM, Striano T, Kaufman J, Johnson MH (2004) Eye gaze cueing facilitates neural processing of objects in 4-month-old infants. neuroreport 15(16):2553–2555

    Article  PubMed  Google Scholar 

  • Reynolds GDR, Richards JE (2007) Infant heart rate: a developmental psychophysiological perspective. In: Segalowitz LASSJ (ed) Developmental Psychophysiology. Cambridge Press, Cambridge, pp 173–210

    Chapter  Google Scholar 

  • Reynolds GD, Richards JE (2009) Cortical source localization of infant cognition. Dev Neuropsychol 34(3):312–329. doi:10.1080/87565640902801890

    Article  PubMed  PubMed Central  Google Scholar 

  • Reynolds GD, Courage ML, Richards JE (2010) Infant attention and visual preferences: converging evidence from behavior, event-related potentials, and cortical source localization. Dev Psychol 46(4):886–904. doi:10.1037/A0019670

    Article  PubMed  PubMed Central  Google Scholar 

  • Richards JE (2000a) Localizing the development of covert attention in infants with scalp event-related potentials. Dev Psychol 36(1):91–108

    Article  CAS  PubMed  Google Scholar 

  • Richards JE (2000b) The development of covert attention to peripheral targets and its relation to attention to central visual stimuli. Paper presented at the International Conference for Infant Studies, Brighton

  • Richards JE (2001) Cortical indexes of saccade planning following covert orienting in 20-week-old infants. Infancy 2(2):135–157. doi:10.1207/S15327078in0202_2

    Article  Google Scholar 

  • Richards JE (2004) Development of covert orienting in young infants. In: Itti L, Rees G, Tsotsos J (eds) Neurobiology of attention. Academic Press/Elsevier, New York, pp 82–88

  • Richards JE (2005) Localizing cortical sources of event-related potentials in infants’ covert orienting. Dev Sci 8(3):255–278. doi:10.1111/j.1467-7687.2005.00414.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Richards JE (2008) Attention in young infants: A developmental psychophysiological perspective. In: Nelson CA, Luciana M (eds) Handbook of developmental cognitive neuroscience (2nd ed). MIT Press, Cambridge, MA, pp 479–497

  • Richards JE (2009) Attention in the brain and early infancy. In: Johnson SP (ed) Neoconstructivism: The new science of cognitive development, vol 1. Oxford University Press, New York

    Google Scholar 

  • Richards JE (2010) The development of attention to simple and complex visual stimuli in infants: behavioral and psychophysiological measures. Dev Rev 30(2):203–219. doi:10.1016/J.Dr.2010.03.005

    Article  PubMed  PubMed Central  Google Scholar 

  • Richards JE (2013) Cortical sources of ERP in prosaccade and antisaccade eye movements using realistic source models. Front Syst Neurosci 7:27. doi:10.3389/fnsys.2013.00027

    Article  PubMed  PubMed Central  Google Scholar 

  • Richards JE, Casey BJ (1991) Heart rate variability during attention phases in young infants. Psychophysiology 28(1):43–53

  • Richards JE, Xie W (2015) Brains for all the ages: Structural neurodevelopment in infants and children from a life-span perspective. In: Benson J (ed) Advances in child development and behavior, vol 48. Elsevier, Philadephia, pp 1–52

    Google Scholar 

  • Richards JE, Reynolds GD, Courage ML (2010) The neural bases of infant attention. Curr Dir Psychol Sci 19(1):41–46. doi:10.1177/0963721409360003

    Article  PubMed  PubMed Central  Google Scholar 

  • Richards JE, Boswell C, Stevens M, Vendemia JM (2015a) Evaluating methods for constructing average high-density electrode positions. Brain Topogr 28(1):70–86. doi:10.1007/s10548-014-0400-8

    Article  PubMed  Google Scholar 

  • Richards JE, Sanchez C, Phillips-Meek M, Xie W (2015b) A database of age-appropriate average MRI templates. Neuroimage. doi:10.1016/j.neuroimage.2015.04.055

    Google Scholar 

  • Rohlfing KJ, Longo MR, Bertenthal BI (2012) Dynamic pointing triggers shifts of visual attention in young infants. Dev Sci 15(3):426–435. doi:10.1111/j.1467-7687.2012.01139.x

    Article  PubMed  Google Scholar 

  • Sanchez CE, Richards JE, Almli CR (2012) Neurodevelopmental MRI brain templates for children from 2 weeks to 4 years of age. Dev Psychobiol 54(1):77–91. doi:10.1002/dev.20579

    Article  PubMed  Google Scholar 

  • Stets M, Reid VM (2011) Infant ERP amplitudes change over the course of an experimental session: implications for cognitive processes and methodology. Brain Dev 33(7):558–568

    Article  PubMed  Google Scholar 

  • Stets M, Stahl D, Reid VM (2012) A meta-analysis investigating factors underlying attrition rates in infant ERP studies. Dev Neuropsychol 37(3):226–252

    Article  PubMed  Google Scholar 

  • Tucker DM (1993) Spatial sampling of head electrical fields: the geodesic sensor net. Electroencephalogr Clin Neurophysiol 87(3):154–163. doi:10.1016/0013-4694(93)90121-B

    Article  CAS  PubMed  Google Scholar 

  • Tucker DM, Liotti M, Potts GF, Russell GS, Posner MI (1994) Spatiotemporal analysis of brain electrical fields. Hum Brain Mapp 1(2):134–152

    Article  Google Scholar 

  • Varga K, Frick JE, Kapa LL, Dengler MJ (2010) Developmental changes in inhibition of return from 3 to 6 months of age. Infant Behav Dev 33(2):245–249. doi:10.1016/j.infbeh.2009.12.011

    Article  PubMed  Google Scholar 

  • Vorwerk J, Cho JH, Rampp S, Hamer H, Knösche TR, Wolters CH (2014) A guideline for head volume conductor modeling in EEG and MEG. NeuroImage 100:590–607

    Article  PubMed  Google Scholar 

  • Vossen H, Van Breukelen G, Hermens H, Van Os J, Lousberg R (2011) More potential in statistical analyses of event-related potentials: a mixed regression approach. Int J Methods Psychiatr Res 20(3):e56–e68

    PubMed  Google Scholar 

  • Xie W, Richards JE (2016) Effects of interstimulus intervals on behavioral, heart rate, and event-related potential indices of infant engagement and sustained attention. Psychophysiology. doi:10.1111/psyp.12760

    PubMed  PubMed Central  Google Scholar 

  • Yamagishi N, Goda N, Callan DE, Anderson SJ, Kawato M (2005) Attentional shifts towards an expected visual target alter the level of alpha-band oscillatory activity in the human calcarine cortex. Cognit Brain Res 25(3):799–809. doi:10.1016/j.cogbrainres.2005.09.006

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the following grants: the NIH grant, #R37 HD18942, to JER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanze Xie.

Ethics declarations

Conflict of Interests

The authors have approved the manuscript and agree with its submission. These authors declare no conflict of interest.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, W., Richards, J.E. The Relation between Infant Covert Orienting, Sustained Attention and Brain Activity. Brain Topogr 30, 198–219 (2017). https://doi.org/10.1007/s10548-016-0505-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-016-0505-3

Keywords

Navigation