Skip to main content
Log in

Time-Varying Network Measures in Resting and Task States Using Graph Theoretical Analysis

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

Recent studies have shown the importance of graph theory in analyzing characteristic features of functional networks of the human brain. However, many of these explorations have focused on static patterns of a representative graph that describe the relatively long-term brain activity. Therefore, this study established and characterized functional networks based on the synchronization likelihood and graph theory. Quasidynamic graphs were constructed simply by dividing a long-term static graph into a sequence of subgraphs that each had a timescale of 1 s. Irregular changes were then used to investigate differences in human brain networks between resting and math-operation states using magnetoencephalography, which may provide insights into the functional substrates underlying logical reasoning. We found that graph properties could differ from brain frequency rhythms, with a higher frequency indicating a lower small-worldness, while changes in human brain state altered the functional networks into more-centralized and segregated distributions according to the task requirements. Time-varying connectivity maps could provide detailed information about the structure distribution. The frontal theta activity represents the essential foundation and may subsequently interact with high-frequency activity in cognitive processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Achard S, Bullmore E (2007) Efficiency and cost of economical brain functional networks. PLoS Comput Biol 3(2):e17

    Article  PubMed Central  PubMed  Google Scholar 

  • Barrat A, Barthelemy M, Pastor-Satorras R, Vespignani A (2004) The architecture of complex weighted networks. Proc Natl Acad Sci USA 101(11):3747–3752

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bosboom JL, Stoffers D, Stam CJ, Berendse HW, Wolters ECh (2009a) Cholinergic modulation of MEG resting-state oscillatory activity in Parkinson’s disease related dementia. Clin Neurophysiol 120(5):910–915

    Article  CAS  PubMed  Google Scholar 

  • Bosboom JL, Stoffers D, Wolters ECh, Stam CJ, Berendse HW (2009b) MEG resting state functional connectivity in Parkinson’s disease related dementia. J Neural Transm 116(2):193–202

    Article  CAS  PubMed  Google Scholar 

  • Brainard DH (1997) The psychophysics toolbox. Spat Vis 10(4):433–436

    Article  CAS  PubMed  Google Scholar 

  • Canolty RT, Knight RT (2010) The functional role of cross-frequency coupling. Trends Cognitive Sci 14(4):506–515

    Article  Google Scholar 

  • Chang C, Glover GH (2010) Time-frequency dynamics of resting-state brain connectivity measured with fMRI. Neuroimage 50(1):81–98

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen JL, Ros T, Gruzelier JH (2013) Dynamic changes of ICA-derived EEG functional connectivity in the resting state. Hum Brain Mapp 34(4):852–868

    Article  PubMed  Google Scholar 

  • de Cheveigné A, Simon JZ (2007) Denoising based on time-shift PCA. J Neurosci Methods 165(2):297–305

    Article  PubMed Central  PubMed  Google Scholar 

  • De Luca M, Beckmann CF, De Stefano N, Matthews PM, Smith SM (2006) fMRI resting state networks define distinct modes of long-distance interactions in the human brain. Neuroimage 29(4):1359–1367

    Article  PubMed  Google Scholar 

  • Douw L, Schoonheim MM, Landi D, van der Meer ML, Geurts JJ, Reijneveld JC et al (2011) Cognition is related to resting-state small-world network topology: an magnetoencephalographic study. Neuroscience 175:169–177

    Article  CAS  PubMed  Google Scholar 

  • Freeman LC (1979) Centrality in social networks. Conceptual clarification. Soc Netw 1(3):215–239

    Article  Google Scholar 

  • Friston KJ (2011) Functional and effective connectivity: a review. Brain Connectivity 1(1):13–36

    Article  PubMed  Google Scholar 

  • Gong G, He Y, Concha L, Lebel C, Gross DW, Evans AC et al (2009) Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. Cereb Cortex 19(3):524–536

    Article  PubMed Central  PubMed  Google Scholar 

  • Grindrod P (2002) Range-dependent random graphs and their application to modeling large small-world Proteome datasets. Phys Rev E 66(6 Pt 2):066702

    Article  Google Scholar 

  • Hyvärinen A, Ramkumar P, Parkkonen L, Hari R (2010) Independent component analysis of short-time Fourier transforms for spontaneous EEG/MEG analysis. Neuroimage 49(1):257–271

    Article  PubMed  Google Scholar 

  • Ioannides AA (2001) Real time human brain function: observations and inferences from single trial analysis of magnetoencephalographic signals. Clin Electroencephalogr 32(3):98–111

    CAS  PubMed  Google Scholar 

  • Jensen O, Colgin LL (2007) Cross-frequency coupling between neuronal oscillations. Trends Cognitive Sci 11(7):267–269

    Article  Google Scholar 

  • Lachaux JP, Rodriguez E, Martinerie J, Varela FJ (1999) Measuring phase synchrony in brain signals. Hum Brain Mapp 8(4):194–208

    Article  CAS  PubMed  Google Scholar 

  • Langer N, von Bastian CC, Wirz H, Oberauer K, Jancke L (2013) The effects of working memory training on functional brain network efficiency. Cortex 49(9):2424–2438

    Article  PubMed  Google Scholar 

  • Liu Z, Fukunaga M, de Zwart JA, Duyn JH (2010) Large-scale spontaneous fluctuations and correlations in brain electrical activity observed with magnetoencephalography. Neuroimage 51(1):102–111

    Article  PubMed Central  PubMed  Google Scholar 

  • Moewes C, Kruse R, Sabel BA (2013) Analysis of Dynamic Brain Networks Using VAR Models. In: Kruse R et al (eds) Synergies of soft computing and statistics for intelligent data analysis advances in intelligent systems and computing. Springer, Berlin, pp 525–532

    Chapter  Google Scholar 

  • Montez T, Linkenkaer-Hansen KB, van Dijk W, Stam CJ (2006) Synchronization likelihood with explicit time-frequency priors. Neuroimage 33(4):1117–1125

    Article  CAS  PubMed  Google Scholar 

  • Musso F, Brinkmeyer J, Mobascher A, Warbrick T, Winterer G (2010) Spontaneous brain activity and EEG microstates. A novel EEG/fMRI analysis approach to explore resting-state networks. Neuroimage 52(4):1149–1161

    Article  CAS  PubMed  Google Scholar 

  • Mutlu AY, Bernat E, Aviyente S (2012) A signal-processing-based approach to time-varying graph analysis for dynamic brain network identification. Comput Math Methods Med. doi:10.1155/2012/451516

    Google Scholar 

  • Navas A, Papo D, Boccaletti S, del-Pozo F, Bajo R, Maestú F et al (2013). Functional hubs in mild cognitive impairment. Int J Bifurc Chaos, arXiv:1307.0969

  • Newman ME (2004) Analysis of weighted networks. Phys Rev E 70(5 Pt 2):056131

    Article  CAS  Google Scholar 

  • Olde Dubbelink KT, Felius A, Verbunt JP, van Dijk BW, Berendse HW, Stam CJ et al (2008) Increased resting-state functional connectivity in obese adolescents; a magnetoencephalographic pilot study. PLoS One 3(7):e2827

    Article  PubMed Central  PubMed  Google Scholar 

  • Opsahl T, Agneessens F, Skvoretz J (2010) Node centrality in weighted networks: generalizing degree and shortest paths. Soc Netw 32(3):245–251

    Article  Google Scholar 

  • Pelli DG (1997) The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spat Vis 10(4):437–442

    Article  CAS  PubMed  Google Scholar 

  • Prichard J, Theiler D (1994) Generating surrogate data for time series with several simultaneously measured variables. Phys Rev Lett 73(7):951–954

    Article  PubMed  Google Scholar 

  • Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3):1059–1069

    Article  PubMed  Google Scholar 

  • Schiff SJ, So P, Chang T, Burke RE, Sauer T (1996) Detecting dynamical interdependence and generalized synchrony through mutual prediction in a neural ensemble. Phys Rev E 54(6):6708–6724

    Article  CAS  Google Scholar 

  • Schoonheim MM, Geurts JJ, Landi D, Douw L, van der Meer ML, Vrenken H et al (2013) Functional connectivity changes in multiple sclerosis patients: a graph analytical study of MEG resting state data. Hum Brain Mapp 34(1):52–61

    Article  PubMed  Google Scholar 

  • Smit DJ, Stam CJ, Posthuma D, Boomsma DI, de Geus EJ (2008) Heritability of “small-world” networks in the brain: a graph theoretical analysis of resting-state EEG functional connectivity. Hum Brain Mapp 29(12):1368–1378

    Article  PubMed  Google Scholar 

  • Smit DJ, Boersma M, van Beijsterveldt CE, Posthuma D, Boomsma DI, Stam CJ et al (2010) Endophenotypes in a dynamically connected brain. Behav Genet 40(2):167–177

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stam CJ (2004) Functional connectivity patterns of human magnetoencephalographic recordings: a ‘small-world’ network? Neurosci Lett 355(1–2):25–28

    Article  CAS  PubMed  Google Scholar 

  • Stam CJ, van Dijk BW (2002) Synchronization likelihood: an unbiased measure of generalized synchronization in multivariate data sets. Physica D 163(3):236–251

    Article  Google Scholar 

  • Stam CJ, Jones BF, Manshanden I, van Cappellen van Walsum AM, Montez T, Verbunt T et al (2006) Magnetoencephalographic evaluation of resting-state functional connectivity in Alzheimer’s disease. Neuroimage 32(3):1335–1344

    Article  CAS  PubMed  Google Scholar 

  • Stam CJ, de Haan W, Daffertshofer A, Jones BF, Manshanden I, van Walsum AMVC et al (2009) Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer’s disease. Brain 132(Pt 1):213–224

    CAS  PubMed  Google Scholar 

  • Stoffers D, Bosboom JL, Deijen JB, Wolters ECh, Stam CJ, Berendse HW (2008) Increased cortico-cortical functional connectivity in early-stage Parkinson’s disease: an MEG study. Neuroimage 41(2):212–222

    Article  CAS  PubMed  Google Scholar 

  • Tan B, Kong X, Yang P, Jin Z, Li L (2013) The difference of brain functional connectivity between eyes-closed and eyes-open using graph theoretical analysis. Comput Math Methods Med. doi:10.1155/2013/976365

    Google Scholar 

  • Tian L, Wang J, Yan C, He Y (2011) Hemisphere- and gender-related differences in small-world brain networks: a resting-state functional MRI study. Neuroimage 54(1):191–202

    Article  PubMed  Google Scholar 

  • van den Heuvel MP, Hulshoff Pol HE (2010) Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol 20(8):519–534

    Article  PubMed  Google Scholar 

  • van Diessen E, Otte WM, Braun KP, Stam CJ, Jansen FE (2013) Improved diagnosis in children with partial epilepsy using a multivariable prediction model based on EEG network characteristics. PLoS One 8(4):e59764

    Article  PubMed Central  PubMed  Google Scholar 

  • van Wijk BC, Stam CJ, Daffertshofer A (2010) Daffertshofer, Comparing brain networks of different size and connectivity density using graph theory. PLoS One 5(10):e13701

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang Z, Liu J, Zhong N, Qin Y, Zhou H, Li K (2012) Changes in the brain intrinsic organization in both on-task state and post-task resting state. Neuroimage 62(1):394–407

    Article  PubMed  Google Scholar 

  • Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393(6684):440–442

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Eichele T, Calhoun VD (2010) Reactivity of hemodynamic responses and functional connectivity to different states of alpha synchrony: a concurrent EEG-fMRI study. Neuroimage 52(4):1252–1260

    Article  PubMed Central  PubMed  Google Scholar 

  • Zuo XN, Ehmke R, Mennes M, Imperati D, Castellanos FX, Sporns O et al (2012) Network centrality in the human functional connectome. Cereb Cortex 22(8):1862–1875

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by research grants from National Science Council (NSC-101-2410-H-130-025-MY2, NSC 100-2628-E-010-002-MY3), Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chia-Yen Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, CY., Lin, CP. Time-Varying Network Measures in Resting and Task States Using Graph Theoretical Analysis. Brain Topogr 28, 529–540 (2015). https://doi.org/10.1007/s10548-015-0432-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-015-0432-8

Keywords

Navigation