Skip to main content

Advertisement

Log in

The Mechanisms and Meaning of the Mismatch Negativity

  • Review
  • Published:
Brain Topography Aims and scope Submit manuscript

An Erratum to this article was published on 27 December 2013

Abstract

The mismatch negativity (MMN) is a pre-attentive auditory event-related potential (ERP) component that is elicited by a change in a repetitive acoustic pattern. It is obtained by subtracting responses evoked by frequent ‘standard’ sounds from responses evoked by infrequent ‘deviant’ sounds that differ from the standards along some acoustic dimension, e.g., frequency, intensity, or duration, or abstract feature. The MMN has been attributed to neural generators within the temporal and frontal lobes. The mechanisms and meaning of the MMN continue to be debated. Two dominant explanations for the MMN have been proposed. According to the “neural adaptation” hypothesis, repeated presentation of the standards results in adapted (i.e., attenuated) responses of feature-selective neurons in auditory cortex. Rare deviant sounds activate neurons that are less adapted than those stimulated by the frequent standard sounds, and thus elicit a larger ‘obligatory’ response, which yields the MMN following the subtraction procedure. In contrast, according to the “sensory memory” hypothesis, the MMN is a ‘novel’ (non-obligatory) ERP component that reflects a deviation between properties of an incoming sound and those of a neural ‘memory trace’ established by the preceding standard sounds. Here, we provide a selective review of studies which are relevant to the controversy between proponents of these two interpretations of the MMN. We also present preliminary neurophysiological data from monkey auditory cortex with potential implications for the debate. We conclude that the mechanisms and meaning of the MMN are still unresolved and offer remarks on how to make progress on these important issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alain C, Woods DL (1997) Attention modulates auditory pattern memory as indexed by event-related brain potentials. Psychophysiology 34:534–546

    CAS  PubMed  Google Scholar 

  • Alain C, Woods DL, Ogawa KH (1994) Brain indices of automatic pattern processing. Neuroreport 6:140–144

    CAS  PubMed  Google Scholar 

  • Alho K, Winkler I, Escera C, Huotilainen M, Virtanen J, Jaaskelainen IP, Pekkonen E, Ilmoniemi RJ (1998) Processing of novel sounds and frequency changes in the human auditory cortex: magnetoencephalographic recordings. Psychophysiology 35:211–224

    CAS  PubMed  Google Scholar 

  • Althen H, Grimm S, Escera C (2011) Fast detection of unexpected sound intensity decrements as revealed by human evoked potentials. PLoS One 6:e28522

    CAS  PubMed Central  PubMed  Google Scholar 

  • Anderson LA, Christianson GB, Linden JF (2009) Stimulus-specific adaptation occurs in the auditory thalamus. J Neurosci 29:7359–7363

    CAS  PubMed  Google Scholar 

  • Arezzo J, Pickoff A, Vaughan HG Jr (1975) The sources and intracerebral distribution of auditory evoked potentials in the alert rhesus monkey. Brain Res 90:57–73

    CAS  PubMed  Google Scholar 

  • Arnal LH, Giraud AL (2012) Cortical oscillations and sensory predictions. Trends Cogn Sci 16:390–398

    PubMed  Google Scholar 

  • Arnott SR, Alain C (2002) Stepping out of the spotlight: MMN attenuation as a function of distance from the attended location. Neuroreport 13:2209–2212

    PubMed  Google Scholar 

  • Atencio CA, Blake DT, Strata F, Cheung SW, Merzenich MM, Schreiner CE (2007) Frequency-modulation encoding in the primary auditory cortex of the awake owl monkey. J Neurophysiol 98:2182–2195

    PubMed  Google Scholar 

  • Bartlett EL, Wang X (2005) Long-lasting modulation by stimulus context in primate auditory cortex. J Neurophysiol 94:83–104

    PubMed  Google Scholar 

  • Bekinschtein TA, Dehaene S, Rohaut B, Tadel F, Cohen L, Naccache L (2009) Neural signature of the conscious processing of auditory regularities. Proc Natl Acad Sci USA 106:1672–1677

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bendixen A, Schroger E (2008) Memory trace formation for abstract auditory features and its consequences in different attentional contexts. Biol Psychol 78:231–241

    PubMed  Google Scholar 

  • Bendixen A, Schroger E, Winkler I (2009) I heard that coming: event-related potential evidence for stimulus-driven prediction in the auditory system. J Neurosci 29:8447–8451

    CAS  PubMed  Google Scholar 

  • Bendixen A, SanMiguel I, Schroger E (2012) Early electrophysiological indicators for predictive processing in audition: a review. Int J Psychophysiol 83:120–131

    PubMed  Google Scholar 

  • Bendor D, Wang X (2010) Neural coding of periodicity in marmoset auditory cortex. J Neurophysiol 103:1809–1822

    PubMed Central  PubMed  Google Scholar 

  • Brosch M, Schreiner CE (1997) Time course of forward masking tuning curves in cat primary auditory cortex. J Neurophysiol 77:923–943

    CAS  PubMed  Google Scholar 

  • Brugge JF, Volkov IO, Oya H, Kawasaki H, Reale RA, Fenoy A, Steinschneider M, Howard MA 3rd (2008) Functional localization of auditory cortical fields of human: click-train stimulation. Hear Res 238:12–24

    PubMed  Google Scholar 

  • Budd TW, Barry RJ, Gordon E, Rennie C, Michie PT (1998) Decrement of the N1 auditory event-related potential with stimulus repetition: habituation vs. refractoriness. Int J Psychophysiol 31:51–68

    CAS  PubMed  Google Scholar 

  • Campbell T, Neuvonen T (2007) Adaptation of neuromagnetic N1 without shifts in dipolar orientation. Neuroreport 18:377–380

    PubMed  Google Scholar 

  • Chennu S, Noreika V, Gueorguiev D, Blenkmann A, Kochen S, Ibanez A, Owen AM, Bekinschtein TA (2013) Expectation and attention in hierarchical auditory prediction. J Neurosci 33:11194–11205

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cornella M, Leung S, Grimm S, Escera C (2012) Detection of simple and pattern regularity violations occurs at different levels of the auditory hierarchy. PLoS One 7:e43604

    CAS  PubMed Central  PubMed  Google Scholar 

  • Denham SL, Winkler I (2006) The role of predictive models in the formation of auditory streams. J Physiol Paris 100:154–170

    CAS  PubMed  Google Scholar 

  • Doeller CF, Opitz B, Mecklinger A, Krick C, Reith W, Schroger E (2003) Prefrontal cortex involvement in preattentive auditory deviance detection: neuroimaging and electrophysiological evidence. Neuroimage 20:1270–1282

    PubMed  Google Scholar 

  • Edwards E, Soltani M, Deouell LY, Berger MS, Knight RT (2005) High gamma activity in response to deviant auditory stimuli recorded directly from human cortex. J Neurophysiol 94:4269–4280

    PubMed  Google Scholar 

  • Elangovan S, Cranfordt JL, Walker L, Stuart A (2005) A comparison of the mismatch negativity and a differential waveform response. Int J Audiol 44:637–646

    PubMed  Google Scholar 

  • Farley BJ, Quirk MC, Doherty JJ, Christian EP (2010) Stimulus-specific adaptation in auditory cortex is an NMDA-independent process distinct from the sensory novelty encoded by the mismatch negativity. J Neurosci 30:16475–16484

    CAS  PubMed  Google Scholar 

  • Fishman YI, Steinschneider M (2009) Temporally dynamic frequency tuning of population responses in monkey primary auditory cortex. Hear Res 254:64–76

    PubMed Central  PubMed  Google Scholar 

  • Fishman YI, Steinschneider M (2012) Searching for the mismatch negativity in primary auditory cortex of the awake monkey: deviance detection or stimulus specific adaptation? J Neurosci 32:15747–15758

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fishman YI, Reser DH, Arezzo JC, Steinschneider M (2001a) Neural correlates of auditory stream segregation in primary auditory cortex of the awake monkey. Hear Res 151:167–187

    CAS  PubMed  Google Scholar 

  • Fishman YI, Volkov IO, Noh MD, Garell PC, Bakken H, Arezzo JC, Howard MA, Steinschneider M (2001b) Consonance and dissonance of musical chords: neural correlates in auditory cortex of monkeys and humans. J Neurophysiol 86:2761–2788

    CAS  PubMed  Google Scholar 

  • Fishman YI, Arezzo JC, Steinschneider M (2004) Auditory stream segregation in monkey auditory cortex: effects of frequency separation, presentation rate, and tone duration. J Acoust Soc Am 116:1656–1670

    PubMed  Google Scholar 

  • Fishman YI, Micheyl C, Steinschneider M (2012) Neural mechanisms of rhythmic masking release in monkey primary auditory cortex: implications for models of auditory scene analysis. J Neurophysiol 107:2366–2382

    PubMed Central  PubMed  Google Scholar 

  • Friedman D, Cycowicz YM, Gaeta H (2001) The novelty P3: an event-related brain potential (ERP) sign of the brain’s evaluation of novelty. Neurosci Biobehav Rev 25:355–373

    CAS  PubMed  Google Scholar 

  • Friston K (2005) A theory of cortical responses. Philos Trans R Soc Lond B Biol Sci 360:815–836

    PubMed Central  PubMed  Google Scholar 

  • Friston K (2008) Hierarchical models in the brain. PLoS Comput Biol 4:e1000211

    PubMed Central  PubMed  Google Scholar 

  • Gaese BH, Ostwald J (1995) Temporal coding of amplitude and frequency modulation in the rat auditory cortex. Eur J Neurosci 7:438–450

    CAS  PubMed  Google Scholar 

  • Garrido MI, Kilner JM, Stephan KE, Friston KJ (2009) The mismatch negativity: a review of underlying mechanisms. Clin Neurophysiol 120:453–463

    PubMed Central  PubMed  Google Scholar 

  • Giard MH, Perrin F, Pernier J, Bouchet P (1990) Brain generators implicated in the processing of auditory stimulus deviance: a topographic event-related potential study. Psychophysiology 27:627–640

    CAS  PubMed  Google Scholar 

  • Gil-da-Costa R, Stoner GR, Fung R, Albright TD (2013) Nonhuman primate model of schizophrenia using a noninvasive EEG method. Proc Natl Acad Sci USA 110:15425–15430

    Google Scholar 

  • Haenschel C, Vernon DJ, Dwivedi P, Gruzelier JH, Baldeweg T (2005) Event-related brain potential correlates of human auditory sensory memory-trace formation. J Neurosci 25:10494–10501

    CAS  PubMed  Google Scholar 

  • Hari R, Hamalainen M, Ilmoniemi R, Kaukoranta E, Reinikainen K, Salminen J, Alho K, Naatanen R, Sams M (1984) Responses of the primary auditory cortex to pitch changes in a sequence of tone pips: neuromagnetic recordings in man. Neurosci Lett 50:127–132

    CAS  PubMed  Google Scholar 

  • He J, Hashikawa T, Ojima H, Kinouchi Y (1997) Temporal integration and duration tuning in the dorsal zone of cat auditory cortex. J Neurosci 17:2615–2625

    CAS  PubMed  Google Scholar 

  • Heil P, Rajan R, Irvine DR (1992) Sensitivity of neurons in cat primary auditory cortex to tones and frequency-modulated stimuli. I: effects of variation of stimulus parameters. Hear Res 63:108–134

    CAS  PubMed  Google Scholar 

  • Horvath J, Czigler I, Sussman E, Winkler I (2001) Simultaneously active pre-attentive representations of local and global rules for sound sequences in the human brain. Brain Res Cogn Brain Res 12:131–144

    CAS  PubMed  Google Scholar 

  • Horvath J, Czigler I, Jacobsen T, Maess B, Schroger E, Winkler I (2008) MMN or no MMN: no magnitude of deviance effect on the MMN amplitude. Psychophysiology 45:60–69

    PubMed  Google Scholar 

  • Hsieh IH, Fillmore P, Rong F, Hickok G, Saberi K (2012) FM-selective networks in human auditory cortex revealed using fMRI and multivariate pattern classification. J Cogn Neurosci 24:1896–1907

    PubMed  Google Scholar 

  • Hughes HC, Darcey TM, Barkan HI, Williamson PD, Roberts DW, Aslin CH (2001) Responses of human auditory association cortex to the omission of an expected acoustic event. Neuroimage 13:1073–1089

    CAS  PubMed  Google Scholar 

  • Jaaskelainen IP, Ahveninen J, Bonmassar G, Dale AM, Ilmoniemi RJ, Levanen S, Lin FH, May P, Melcher J, Stufflebeam S, Tiitinen H, Belliveau JW (2004) Human posterior auditory cortex gates novel sounds to consciousness. Proc Natl Acad Sci USA 101:6809–6814

    PubMed Central  PubMed  Google Scholar 

  • Jacobsen T, Schroger E (2001) Is there pre-attentive memory-based comparison of pitch? Psychophysiology 38:723–727

    CAS  PubMed  Google Scholar 

  • Javitt DC (2000) Intracortical mechanisms of mismatch negativity dysfunction in schizophrenia. Audiol Neurootol 5:207–215

    CAS  PubMed  Google Scholar 

  • Javitt DC, Zukin SR (1991) Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 148:1301–1308

    CAS  PubMed  Google Scholar 

  • Javitt DC, Schroeder CE, Steinschneider M, Arezzo JC, Vaughan HG Jr (1992) Demonstration of mismatch negativity in the monkey. Electroencephalogr Clin Neurophysiol 83:87–90

    CAS  PubMed  Google Scholar 

  • Javitt DC, Steinschneider M, Schroeder CE, Vaughan HG Jr, Arezzo JC (1994) Detection of stimulus deviance within primate primary auditory cortex: intracortical mechanisms of mismatch negativity (MMN) generation. Brain Res 667:192–200

    CAS  PubMed  Google Scholar 

  • Javitt DC, Steinschneider M, Schroeder CE, Arezzo JC (1996) Role of cortical N-methyl-D-aspartate receptors in auditory sensory memory and mismatch negativity generation: implications for schizophrenia. Proc Natl Acad Sci USA 93:11962–11967

    CAS  PubMed Central  PubMed  Google Scholar 

  • Javitt DC, Jayachandra M, Lindsley RW, Specht CM, Schroeder CE (2000) Schizophrenia-like deficits in auditory P1 and N1 refractoriness induced by the psychomimetic agent phencyclidine (PCP). Clin Neurophysiol 111:833–836

    CAS  PubMed  Google Scholar 

  • Jemel B, Achenbach C, Muller BW, Ropcke B, Oades RD (2002) Mismatch negativity results from bilateral asymmetric dipole sources in the frontal and temporal lobes. Brain Topogr 15:13–27

    PubMed  Google Scholar 

  • Korzyukov O, Alho K, Kujala A, Gumenyuk V, Ilmoniemi RJ, Virtanen J, Kropotov J, Naatanen R (1999) Electromagnetic responses of the human auditory cortex generated by sensory-memory based processing of tone-frequency changes. Neurosci Lett 276:169–172

    CAS  PubMed  Google Scholar 

  • Korzyukov OA, Winkler I, Gumenyuk VI, Alho K (2003) Processing abstract auditory features in the human auditory cortex. Neuroimage 20:2245–2258

    PubMed  Google Scholar 

  • Lanting CP, Briley PM, Sumner CJ, Krumbholz K (2013) Mechanisms of adaptation in human auditory cortex. J Neurophysiol 110:973–983

    Google Scholar 

  • Lappe C, Steinstrater O, Pantev C (2013) A beamformer analysis of MEG data reveals frontal generators of the musically elicited mismatch negativity. PLoS One 8:e61296

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee TS, Mumford D (2003) Hierarchical Bayesian inference in the visual cortex. J Opt Soc Am A Opt Image Sci Vis 20:1434–1448

    PubMed  Google Scholar 

  • Liegeois-Chauvel C, Musolino A, Badier JM, Marquis P, Chauvel P (1994) Evoked potentials recorded from the auditory cortex in man: evaluation and topography of the middle latency components. Electroencephalogr Clin Neurophysiol 92:204–214

    CAS  PubMed  Google Scholar 

  • Lozano-Soldevilla D, Marco-Pallares J, Fuentemilla L, Grau C (2012) Common N1 and mismatch negativity neural evoked components are revealed by independent component model-based clustering analysis. Psychophysiology 49:1454–1463

    PubMed  Google Scholar 

  • Lutkenhoner B (2003) Magnetoencephalography and its achilles’ heel. J Physiol Paris 97:641–658

    PubMed  Google Scholar 

  • Macdonald M, Campbell K (2011) Effects of a violation of an expected increase or decrease in intensity on detection of change within an auditory pattern. Brain Cogn 77:438–445

    PubMed  Google Scholar 

  • Maess B, Jacobsen T, Schroger E, Friederici AD (2007) Localizing pre-attentive auditory memory-based comparison: magnetic mismatch negativity to pitch change. Neuroimage 37:561–571

    PubMed  Google Scholar 

  • Malmierca MS, Cristaudo S, Perez-Gonzalez D, Covey E (2009) Stimulus-specific adaptation in the inferior colliculus of the anesthetized rat. J Neurosci 29:5483–5493

    CAS  PubMed Central  PubMed  Google Scholar 

  • May P, Tiitinen H (2001) Human cortical processing of auditory events over time. Neuroreport 12:573–577

    CAS  PubMed  Google Scholar 

  • May PJ, Tiitinen H (2010) Mismatch negativity (MMN), the deviance-elicited auditory deflection, explained. Psychophysiology 47:66–122

    PubMed  Google Scholar 

  • May P, Tiitinen H, Ilmoniemi RJ, Nyman G, Taylor JG, Naatanen R (1999) Frequency change detection in human auditory cortex. J Comput Neurosci 6:99–120

    CAS  PubMed  Google Scholar 

  • Mendelson JR, Cynader MS (1985) Sensitivity of cat primary auditory cortex (AI) neurons to the direction and rate of frequency modulation. Brain Res 327:331–335

    CAS  PubMed  Google Scholar 

  • Mendelson JR, Schreiner CE, Sutter ML, Grasse KL (1993) Functional topography of cat primary auditory cortex: responses to frequency-modulated sweeps. Exp Brain Res 94:65–87

    CAS  PubMed  Google Scholar 

  • Micheyl C, Tian B, Carlyon RP, Rauschecker JP (2005) Perceptual organization of tone sequences in the auditory cortex of awake macaques. Neuron 48:139–148

    CAS  PubMed  Google Scholar 

  • Molholm S, Martinez A, Ritter W, Javitt DC, Foxe JJ (2005) The neural circuitry of pre-attentive auditory change-detection: an fMRI study of pitch and duration mismatch negativity generators. Cereb Cortex 15:545–551

    PubMed  Google Scholar 

  • Muckli L, Petro LS (2013) Network interactions: non-geniculate input to V1. Curr Opin Neurobiol 23:195–201

    CAS  PubMed  Google Scholar 

  • Muckli L, Petro LS, Smith FW (2013) Backwards is the way forward: feedback in the cortical hierarchy predicts the expected future. Behav Brain Sci 36:221

    PubMed  Google Scholar 

  • Naatanen R, Alho K (1995a) Mismatch negativity—a unique measure of sensory processing in audition. Int J Neurosci 80:317–337

    CAS  PubMed  Google Scholar 

  • Naatanen R, Alho K (1995b) Generators of electrical and magnetic mismatch responses in humans. Brain Topogr 7:315–320

    CAS  PubMed  Google Scholar 

  • Naatanen R, Escera C (2000) Mismatch negativity: clinical and other applications. Audiol Neurootol 5:105–110

    CAS  PubMed  Google Scholar 

  • Naatanen R, Picton T (1987) The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology 24:375–425

    CAS  PubMed  Google Scholar 

  • Naatanen R, Paavilainen P, Tiitinen H, Jiang D, Alho K (1993) Attention and mismatch negativity. Psychophysiology 30:436–450

    CAS  PubMed  Google Scholar 

  • Naatanen R, Tervaniemi M, Sussman E, Paavilainen P, Winkler I (2001) “Primitive intelligence” in the auditory cortex. Trends Neurosci 24:283–288

    CAS  PubMed  Google Scholar 

  • Naatanen R, Jacobsen T, Winkler I (2005) Memory-based or afferent processes in mismatch negativity (MMN): a review of the evidence. Psychophysiology 42:25–32

    PubMed  Google Scholar 

  • Naatanen R, Paavilainen P, Rinne T, Alho K (2007) The mismatch negativity (MMN) in basic research of central auditory processing: a review. Clin Neurophysiol 118:2544–2590

    CAS  PubMed  Google Scholar 

  • Naatanen R, Kujala T, Escera C, Baldeweg T, Kreegipuu K, Carlson S, Ponton C (2012) The mismatch negativity (MMN)—a unique window to disturbed central auditory processing in ageing and different clinical conditions. Clin Neurophysiol 123:424–458

    CAS  PubMed  Google Scholar 

  • Nordby H, Roth WT, Pfefferbaum A (1988) Event-related potentials to breaks in sequences of alternating pitches or interstimulus intervals. Psychophysiology 25:262–268

    CAS  PubMed  Google Scholar 

  • Nourski KV, Steinschneider M, Oya H, Kawasaki H, Jones RD, Howard MA (2012) Spectral organization of the human lateral superior temporal gyrus revealed by intracranial recordings. Cereb Cortex (in press)

  • Opitz B, Rinne T, Mecklinger A, von Cramon DY, Schroger E (2002) Differential contribution of frontal and temporal cortices to auditory change detection: FMRI and ERP results. Neuroimage 15:167–174

    PubMed  Google Scholar 

  • Paavilainen P (2013) The mismatch-negativity (MMN) component of the auditory event-related potential to violations of abstract regularities: a review. Int J Psychophysiol 88:109–123

    PubMed  Google Scholar 

  • Paavilainen P, Jaramillo M, Naatanen R, Winkler I (1999) Neuronal populations in the human brain extracting invariant relationships from acoustic variance. Neurosci Lett 265:179–182

    CAS  PubMed  Google Scholar 

  • Pelleg-Toiba R, Wollberg Z (1989) Tuning properties of auditory cortex cells in the awake squirrel monkey. Exp Brain Res 74:353–364

    CAS  PubMed  Google Scholar 

  • Pincze Z, Lakatos P, Rajkai C, Ulbert I, Karmos G (2001) Separation of mismatch negativity and the N1 wave in the auditory cortex of the cat: a topographic study. Clin Neurophysiol 112:778–784

    CAS  PubMed  Google Scholar 

  • Pincze Z, Lakatos P, Rajkai C, Ulbert I, Karmos G (2002) Effect of deviant probability and interstimulus/interdeviant interval on the auditory N1 and mismatch negativity in the cat auditory cortex. Brain Res Cogn Brain Res 13:249–253

    PubMed  Google Scholar 

  • Raij T, McEvoy L, Makela JP, Hari R (1997) Human auditory cortex is activated by omissions of auditory stimuli. Brain Res 745:134–143

    CAS  PubMed  Google Scholar 

  • Rao RP, Ballard DH (1999) Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat Neurosci 2:79–87

    CAS  PubMed  Google Scholar 

  • Recanzone GH, Guard DC, Phan ML (2000) Frequency and intensity response properties of single neurons in the auditory cortex of the behaving macaque monkey. J Neurophysiol 83:2315–2331

    CAS  PubMed  Google Scholar 

  • Rosburg T (2003) Left hemispheric dipole locations of the neuromagnetic mismatch negativity to frequency, intensity and duration deviants. Brain Res Cogn Brain Res 16:83–90

    PubMed  Google Scholar 

  • Rosburg T, Trautner P, Dietl T, Korzyukov OA, Boutros NN, Schaller C, Elger CE, Kurthen M (2005) Subdural recordings of the mismatch negativity (MMN) in patients with focal epilepsy. Brain 128:819–828

    PubMed  Google Scholar 

  • Rosburg T, Trautner P, Boutros NN, Korzyukov OA, Schaller C, Elger CE, Kurthen M (2006) Habituation of auditory evoked potentials in intracranial and extracranial recordings. Psychophysiology 43:137–144

    PubMed  Google Scholar 

  • Rosburg T, Zimmerer K, Huonker R (2010) Short-term habituation of auditory evoked potential and neuromagnetic field components in dependence of the interstimulus interval. Exp Brain Res 205:559–570

    PubMed  Google Scholar 

  • Russeler J, Altenmuller E, Nager W, Kohlmetz C, Munte TF (2001) Event-related brain potentials to sound omissions differ in musicians and non-musicians. Neurosci Lett 308:33–36

    CAS  PubMed  Google Scholar 

  • Saarinen J, Paavilainen P, Schoger E, Tervaniemi M, Naatanen R (1992) Representation of abstract attributes of auditory stimuli in the human brain. Neuroreport 3:1149–1151

    CAS  PubMed  Google Scholar 

  • Salisbury DF (2012) Finding the missing stimulus mismatch negativity (MMN): emitted MMN to violations of an auditory gestalt. Psychophysiology 49:544–548

    PubMed Central  PubMed  Google Scholar 

  • Sams M, Kaukoranta E, Hamalainen M, Naatanen R (1991) Cortical activity elicited by changes in auditory stimuli: different sources for the magnetic N100 m and mismatch responses. Psychophysiology 28:21–29

    CAS  PubMed  Google Scholar 

  • SanMiguel I, Widmann A, Bendixen A, Trujillo-Barreto N, Schröger E (2013) Hearing silences: human auditory processing relies on preactivation of sound-specific brain activity patterns. J Neurosci 33:8633–8639

    CAS  PubMed  Google Scholar 

  • Scherg M, Von Cramon D (1985) Two bilateral sources of the late AEP as identified by a spatio-temporal dipole model. Electroencephalogr Clin Neurophysiol 62:32–44

    CAS  PubMed  Google Scholar 

  • Scholl B, Gao X, Wehr M (2010) Nonoverlapping sets of synapses drive on responses and off responses in auditory cortex. Neuron 65:412–421

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schroeder CE, Mehta AD, Givre SJ (1998) A spatiotemporal profile of visual system activation revealed by current source density analysis in the awake macaque. Cereb Cortex 8:575–592

    CAS  PubMed  Google Scholar 

  • Schroger E, Wolff C (1996) Mismatch response of the human brain to changes in sound location. Neuroreport 7:3005–3008

    CAS  PubMed  Google Scholar 

  • Schroger E, Bendixen A, Trujillo-Barreto NJ, Roeber U (2007) Processing of abstract rule violations in audition. PLoS One 2:e1131

    PubMed Central  PubMed  Google Scholar 

  • Sculthorpe LD, Campbell KB (2011) Evidence that the mismatch negativity to pattern violations does not vary with deviant probability. Clin Neurophysiol 122:2236–2245

    PubMed  Google Scholar 

  • Shamma SA, Fleshman JW, Wiser PR, Versnel H (1993) Organization of response areas in ferret primary auditory cortex. J Neurophysiol 69:367–383

    CAS  PubMed  Google Scholar 

  • Shelley AM, Silipo G, Javitt DC (1999) Diminished responsiveness of ERPs in schizophrenic subjects to changes in auditory stimulation parameters: implications for theories of cortical dysfunction. Schizophr Res 37:65–79

    CAS  PubMed  Google Scholar 

  • Sussman ES (2007) A new view on the MMN and attention debate: the role of context in processing auditory events. J Psychophysiol 21:164–175

    Google Scholar 

  • Sussman ES, Gumenyuk V (2005) Organization of sequential sounds in auditory memory. Neuroreport 16:1519–1523

    PubMed  Google Scholar 

  • Sussman E, Ritter W, Vaughan HG Jr (1998) Predictability of stimulus deviance and the mismatch negativity. Neuroreport 9:4167–4170

    CAS  PubMed  Google Scholar 

  • Taaseh N, Yaron A, Nelken I (2011) Stimulus-specific adaptation and deviance detection in the rat auditory cortex. PLoS One 6:e23369

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tervaniemi M, Maury S, Naatanen R (1994a) Neural representations of abstract stimulus features in the human brain as reflected by the mismatch negativity. Neuroreport 5:844–846

    CAS  PubMed  Google Scholar 

  • Tervaniemi M, Saarinen J, Paavilainen P, Danilova N, Naatanen R (1994b) Temporal integration of auditory information in sensory memory as reflected by the mismatch negativity. Biol Psychol 38:157–167

    CAS  PubMed  Google Scholar 

  • Tian B, Rauschecker JP (2004) Processing of frequency-modulated sounds in the lateral auditory belt cortex of the rhesus monkey. J Neurophysiol 92:2993–3013

    PubMed  Google Scholar 

  • Tiitinen H, Alho K, Huotilainen M, Ilmoniemi RJ, Simola J, Naatanen R (1993) Tonotopic auditory cortex and the magnetoencephalographic (MEG) equivalent of the mismatch negativity. Psychophysiology 30:537–540

    CAS  PubMed  Google Scholar 

  • Todorovic A, de Lange FP (2012) Repetition suppression and expectation suppression are dissociable in time in early auditory evoked fields. J Neurosci 32:13389–13395

    CAS  PubMed  Google Scholar 

  • Todorovic A, van Ede F, Maris E, de Lange FP (2011) Prior expectation mediates neural adaptation to repeated sounds in the auditory cortex: an MEG study. J Neurosci 31:9118–9123

    CAS  PubMed  Google Scholar 

  • Umbricht D, Schmid L, Koller R, Vollenweider FX, Hell D, Javitt DC (2000) Ketamine-induced deficits in auditory and visual context-dependent processing in healthy volunteers: implications for models of cognitive deficits in schizophrenia. Arch Gen Psychiatry 57:1139–1147

    CAS  PubMed  Google Scholar 

  • Ulanovsky N, Las L, Nelken I (2003) Processing of low-probability sounds by cortical neurons. Nat Neurosci 6:391–398

    Google Scholar 

  • Vaughan HG Jr, Ritter W (1970) The sources of auditory evoked responses recorded from the human scalp. Electroencephalogr Clin Neurophysiol 28:360–367

    PubMed  Google Scholar 

  • von der Behrens W, Bauerle P, Kossl M, Gaese BH (2009) Correlating stimulus-specific adaptation of cortical neurons and local field potentials in the awake rat. J Neurosci 29:13837–13849

    PubMed  Google Scholar 

  • Wacongne C, Labyt E, van Wassenhove V, Bekinschtein T, Naccache L, Dehaene S (2011) Evidence for a hierarchy of predictions and prediction errors in human cortex. Proc Natl Acad Sci USA 108:20754–20759

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wacongne C, Changeux JP, Dehaene S (2012) A neuronal model of predictive coding accounting for the mismatch negativity. J Neurosci 32:3665–3678

    CAS  PubMed  Google Scholar 

  • Walker LJ, Carpenter M, Downs CR, Cranford JL, Stuart A, Pravica D (2001) Possible neuronal refractory or recovery artifacts associated with recording the mismatch negativity response. J Am Acad Audiol 12:348–356

    CAS  PubMed  Google Scholar 

  • Watkins PV, Barbour DL (2011a) Rate-level responses in awake marmoset auditory cortex. Hear Res 275:30–42

    PubMed Central  PubMed  Google Scholar 

  • Watkins PV, Barbour DL (2011b) Level-tuned neurons in primary auditory cortex adapt differently to loud versus soft sounds. Cereb Cortex 21:178–190

    PubMed Central  PubMed  Google Scholar 

  • Winkler I (2007) Interpreting the mismatch negativity. J Psychophysiol 21:147–163

    Google Scholar 

  • Winkler I, Czigler I (2012) Evidence from auditory and visual event-related potential (ERP) studies of deviance detection (MMN and vMMN) linking predictive coding theories and perceptual object representations. Int J Psychophysiol 83:132–143

    PubMed  Google Scholar 

  • Woldorff MG, Hillyard SA, Gallen CC, Hampson SR, Bloom FE (1998) Magnetoencephalographic recordings demonstrate attentional modulation of mismatch-related neural activity in human auditory cortex. Psychophysiology 35:283–292

    CAS  PubMed  Google Scholar 

  • Wood CC, Wolpaw JR (1982) Scalp distribution of human auditory evoked potentials. II. Evidence for overlapping sources and involvement of auditory cortex. Electroencephalogr Clin Neurophysiol 54:25–38

    CAS  PubMed  Google Scholar 

  • Yabe H, Tervaniemi M, Reinikainen K, Naatanen R (1997) Temporal window of integration revealed by MMN to sound omission. Neuroreport 8:1971–1974

    CAS  PubMed  Google Scholar 

  • Yamashiro K, Inui K, Otsuru N, Kida T, Kakigi R (2009) Automatic auditory off-response in humans: an MEG study. Eur J Neurosci 30:125–131

    PubMed  Google Scholar 

  • Yamashiro K, Inui K, Otsuru N, Kakigi R (2011) Change-related responses in the human auditory cortex: an MEG study. Psychophysiology 48:23–30

    PubMed  Google Scholar 

  • Yaron A, Hershenhoren I, Nelken I (2012) Sensitivity to complex statistical regularities in rat auditory cortex. Neuron 76:603–615

    CAS  PubMed  Google Scholar 

  • Yvert B, Fischer C, Bertrand O, Pernier J (2005) Localization of human supratemporal auditory areas from intracerebral auditory evoked potentials using distributed source models. Neuroimage 28:140–153

    PubMed  Google Scholar 

Download references

Acknowledgments

The author thanks the guest editors, Drs. Valerie Shafer and Elyse Sussman, for the invitation to submit this review to the special issue on the MMN. Neurophysiological data from monkeys were obtained in collaboration with Dr. Mitchell Steinschneider. The author is grateful to Dr. Joseph Arezzo for assistance with animal surgery and to Jeannie Hutagalung for assistance with animal training, surgery, and data collection. Two anonymous reviewers provided helpful comments and suggestions on a previous version of the manuscript. Research supported by NIH grant DC00657.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonatan I. Fishman.

Additional information

This is one of several papers published together in Brain Topography in the “Special Issue: Mismatch Negativity”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fishman, Y.I. The Mechanisms and Meaning of the Mismatch Negativity. Brain Topogr 27, 500–526 (2014). https://doi.org/10.1007/s10548-013-0337-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-013-0337-3

Keywords

Navigation