Skip to main content
Log in

The event-related potential component P3a is diminished by identical deviance repetition, but not by non-identical repetitions

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Mismatch negativity (MMN) represents an event-related potential (ERP) component which is elicited by deviant sound events in an otherwise regular, repetitive stimulation. The MMN amplitude typically decreases when two identical deviants are presented in direct succession, but it remains stable when the two deviants vary from the standard in different features. Less is known about such repetition effects on another ERP component, the P3a, which usually follows the MMN. In the current study, we investigated how the P3a was affected by identical and non-identical repetitions of sound deviants. The ERP analysis revealed that the P3a amplitudes were strongly diminished when the repeated deviants were identical, but the P3a remained stable when the repeated deviants varied. The findings suggest that not only the deviance detection system, as reflected in the MMN, but also subsequent attention switch systems, as reflected in the P3a, operate independently across different sound features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bekinschtein TA, Dehaene S, Rohaut B, Tadel F, Cohen L, Naccache L (2009) Neural signature of the conscious processing of auditory regularities. Proc Natl Acad Sci 106(5):1672–1677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comerchero MD, Polich J (1999) P3a and P3b from typical auditory and visual stimuli. Clin Neurophysiol 110:24–30

    Article  CAS  PubMed  Google Scholar 

  • Deacon D, Gomes H, Nousak JM, Ritter W, Javitt D (2000) Effect of frequency separation and stimulus rate on the mismatch negativity: an examination of the issue of refractoriness in humans. Neurosci Lett 287:167–170

    Article  CAS  PubMed  Google Scholar 

  • Escera C, Alho K, Schröger E, Winkler I (2000) Involuntary attention and distractibility as evaluated with event-related brain potentials. Audiol Neurootol 5(3–4):151–166

    Article  CAS  PubMed  Google Scholar 

  • Friedman D, Cycowicz Y, Gaeta H (2001) The novelty P3: an event-related brain potential (ERP) sign of the brain’s evaluation of novelty. Neurosci Biobehav Rev 25(4):355–373

    Article  CAS  PubMed  Google Scholar 

  • Friedman D, Nessler D, Kulik J, Hamberger M (2011) The brain’s orienting response (novelty P3) in patients with unilateral temporal lobe resections. Neuropsychologia 49(12):3474–3483

    Article  PubMed  PubMed Central  Google Scholar 

  • Friston K (2005) A theory of cortical responses. Philos Trans R Soc Lond B Biol Sci 360(1456):815–836

    Article  PubMed  PubMed Central  Google Scholar 

  • Friston K, Kiebel S (2009) Predictive coding under the free-energy principle. Philos Trans R Soc Lond B Biol Sci 364(1521):1211–1221

    Article  PubMed  PubMed Central  Google Scholar 

  • Garrido MI, Kilner JM, Kiebel SJ, Stephan KE, Friston KJ (2007) Dynamic causal modelling of evoked potentials: a reproducibility study. Neuroimage 36(3):571–580

    Article  PubMed  PubMed Central  Google Scholar 

  • Grimm S, Escera C, Nelken I (2016) Early indices of deviance detection in humans and animal models. Biol Psychol 116:23–27

    Article  PubMed  Google Scholar 

  • Hagen GF, Gatherwright JR, Lopez BA, Polich J (2006) P3a from visual stimuli: task difficulty effects. Int J Psychophysiol 59(1):8–14

    Article  PubMed  Google Scholar 

  • Horváth J, Bendixen A (2012) Preventing distraction by probabilistic cueing. Int J Psychophysiol 83(3):342–347

    Article  PubMed  Google Scholar 

  • Horváth J, Winkler I, Bendixen A (2008) Do N1/MMN, P3a, and RON form a strongly coupled chain reflecting the three stages of auditory distraction? Biol Psychol 79(2):139–147

    Article  PubMed  Google Scholar 

  • Hsiao FJ, Wu ZA, Ho LT, Lin YY (2009) Theta oscillation during auditory change detection: an MEG study. Biol Psychol 81(1):58–66

    Article  PubMed  Google Scholar 

  • Jacobsen T, Schröger E (2001) Is there a pre-attentive memory-based comparison of pitch? Psychophysiology 38:723–727

    Article  CAS  PubMed  Google Scholar 

  • Jacobsen T, Schröger E (2003) Measuring duration mismatch negativity. Clin Neurophysiol 114(6):1133–1143

    Article  PubMed  Google Scholar 

  • Jacobsen TK, Steinberg J, Truckenbrodt H, Jacobsen T (2013) Mismatch Negativity (MMN) to successive deviants within one hierarchically structured auditory object. Int J Psychophysiol 87(1):1–7

    Article  PubMed  Google Scholar 

  • Javitt DC, Lee M, Kantrowitz JT, Martinez A (2018) Mismatch negativity as a biomarker of theta band oscillatory dysfunction in schizophrenia. Schizophr Res 191:51–60

    Article  PubMed  Google Scholar 

  • Lecaignard F, Bertrand O, Gimenez G, Mattout J, Caclin A (2015) Implicit learning of predictable sound sequences modulates human brain responses at different levels of the auditory hierarchy. Front Hum Neurosci 9:505

    Article  PubMed  PubMed Central  Google Scholar 

  • Müller D, Schröger E (2007) Temporal grouping affects the automatic processing of deviant sounds. Biol Psychol 74(3):358–364

    Article  PubMed  Google Scholar 

  • Müller D, Widmann A, Schröger E (2005a) Deviance-repetition effects as a function of stimulus feature, feature value variation, and timing: a mismatch negativity study. Biol Psychol 68:1–14

    Article  PubMed  Google Scholar 

  • Müller D, Widmann A, Schröger E (2005b) Auditory streaming affects the processing of successive deviant and standard sounds. Psychophysiology 42(6):668–676

    Article  PubMed  Google Scholar 

  • Näätänen R (1990) The role of attention in auditory by event-related potentials and other brain measures of cognitive function. Behav Brain Sci 13:201–288

    Article  Google Scholar 

  • Näätänen R, Alho K (1995) Mismatch negativity–a unique measure of sensory processing in audition. Int J Neurosci 80(1–4):317–337

    Article  PubMed  Google Scholar 

  • Näätänen R, Gaillard AW, Mäntysalo S (1978) Early selective-attention effect on evoked potential reinterpreted. Acta Psychol (Amst) 42(4):313–329

    Article  Google Scholar 

  • Näätänen R, Pakarinen S, Rinne T, Takegata R (2004) The mismatch negativity (MMN): Towards the optimal paradigm. Clin Neurophysiol 115(1):140–144

    Article  PubMed  Google Scholar 

  • Nicol RM, Chapman SC, Vertes PE, Nathan PJ, Smith ML, Shtyrov Y et al (2012) Fast reconfiguration of high-frequency brain networks in response to surprising changes in auditory input. J Neurophysiol 107(5):1421–1430

    Article  PubMed  Google Scholar 

  • Nousak JM, Deacon D, Ritter W, Vaughan HG (1996) Storage of information in transient auditory memory. Brain Res Cogn Brain Res 4(4):305–317

    Article  CAS  PubMed  Google Scholar 

  • Pakarinen S, Lovio R, Huotilainen M, Alku P, Näätänen R, Kujala T (2009) Fast multi-feature paradigm for recording several mismatch negativities (MMNs) to phonetic and acoustic changes in speech sounds. Biol Psychol 82(3):219–226

    Article  PubMed  Google Scholar 

  • Pakarinen S, Huotilainen M, Näätänen R (2010) The mismatch negativity (MMN) with no standard stimulus. Clin Neurophysiol 121(7):1043–1050

    Article  PubMed  Google Scholar 

  • Partanen E, Torppa R, Pykäläinen J, Kujala T, Huotilainen M (2013) Children’s brain responses to sound changes in pseudo words in a multifeature paradigm. Clin Neurophysiol 124(6):1132–1138

    Article  PubMed  Google Scholar 

  • Rinne T, Särkkä A, Degerman A, Schröger E, Alho K (2006) Two separate mechanisms underlie auditory change detection and involuntary control of attention. Brain Res 1077(1):135–143

    Article  CAS  PubMed  Google Scholar 

  • Sams M, Alho K, Näätänen R (1984) Short-term habituation and dishabituation of the mismatch negativity of the ERP. Psychophysiology 21(4):434–441

    Article  CAS  PubMed  Google Scholar 

  • Sawaki R, Katayama J (2006) Stimulus context determines whether non-target stimuli are processed as task-relevant or distractor information. Clin Neurophysiol 117(11):2532–2539

    Article  PubMed  Google Scholar 

  • Schröger E (1997) On the detection of auditory deviations: a pre-attentive activation model. Psychophysiology 34(3):245–257

    Article  PubMed  Google Scholar 

  • Schubert M, Johannes S, Koch M, Wieringa BM, Dengler R, Munte TF (1998) Differential effects of two motor tasks on ERPs in an auditory classification task: evidence of shared cognitive resources. Neurosci Res 30(2):125–134

    Article  CAS  PubMed  Google Scholar 

  • Sorokin A, Alku P, Kujala T (2010) Change and novelty detection in speech and non-speech sound streams. Brain Res 1327:77–90

    Article  CAS  PubMed  Google Scholar 

  • Strauss M, Sitt JD, King J-R, Elbaz M, Azizi L, Buiatti M et al (2015) Disruption of hierarchical predictive coding during sleep. Proc Natl Acad Sci 112(11):E1353–E1362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sussman E, Winkler I, Ritter W, Alho K, Näätänen N (1999) Temporal integration of auditory stimulus deviance as reflected by the mismatch negativity. Neurosci Lett 264(1–3):161–164

    Article  CAS  PubMed  Google Scholar 

  • Sussman E, Winkler I, Schröger E (2003) Top-down control over involuntary attention switching in the auditory modality. Psychon Bull Rev 10(3):630–637

    Article  CAS  PubMed  Google Scholar 

  • Tavakoli P, Campbell K (2016) Can an auditory multi-feature optimal paradigm be used for the study of processes associated with attention capture in passive listeners? Brain Res 1648:394–408

    Article  CAS  PubMed  Google Scholar 

  • Todd J, Mullens D (2011) Implementing conditional inference in the auditory system: what matters?. Psychophysiology 48(10):1434–1443

    Article  PubMed  Google Scholar 

  • Todd J, Robinson J (2010) The use of conditional inference to reduce prediction error? A mismatch negativity (MMN) study. Neuropsychologia 48(10):3009–3018

    Article  PubMed  Google Scholar 

  • Todd J, Myers R, Pirillo R, Drysdale K (2010) Neuropsychological correlates of auditory perceptual inference: a mismatch negativity (MMN) study. Brain Res 1310:113–123

    Article  CAS  PubMed  Google Scholar 

  • Todd J, Whitson L, Smith E, Michie PT, Schall U, Ward PB (2014) What’s intact and what’s not within the mismatch negativity system in schizophrenia. Psychophysiology 51(4):337–347

    Article  PubMed  Google Scholar 

  • Volosin M, Horváth J (2014) Knowledge of sequence structure prevents auditory distraction: an ERP study. Int J Psychophysiol 92(3):93–98

    Article  PubMed  Google Scholar 

  • Wacongne C, Labyt E, van Wassenhove V, Bekinschtein T, Naccache L, Dehaene S (2011) Evidence for a hierarchy of predictions and prediction errors in human cortex. Proc Natl Acad Sci 108(51):20754–20759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winkler I (2007) Interpreting the mismatch negativity. J Psychophysiol 21(3):147–163

    Article  Google Scholar 

  • Winkler I, Czigler I, Jaramillo M, Paavilainen P, Näätänen R (1998) Temporal constraints of auditory event synthesis: evidence from ERPs. Neuroreport 9(3):495–499

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors greatly appreciate the assistance of Melanie Hilz and Jacqueline Hamann in collecting part of the data. We greatly appreciated the constructive feedback of the three anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timm Rosburg.

Ethics declarations

Conflict of interest

None of the authors have potential conflicts of interest to be disclosed.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 459 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosburg, T., Weigl, M., Thiel, R. et al. The event-related potential component P3a is diminished by identical deviance repetition, but not by non-identical repetitions. Exp Brain Res 236, 1519–1530 (2018). https://doi.org/10.1007/s00221-018-5237-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-018-5237-z

Keywords

Navigation