Skip to main content
Log in

Hierarchical Neural Encoding of Temporal Regularity in the Human Auditory Cortex

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

Temporal regularity provides an important cue for the identification of natural sounds. Here, we measured auditory evoked cortical magnetic fields to investigate the neural processing of temporal regularity that cannot be tonotopically represented in the auditory periphery. Auditory steady state responses (ASSR) and sustained fields (SF) elicited by 40 Hz amplitude modulated periodic and non-periodic noises were analyzed. Periodic noises of 40-, 20-, and 5-Hz were prepared in the form of repeating frozen noises where the same noise segment appears at either each period (40 Hz), every second period (20 Hz), or every eighth period (5 Hz) of amplitude modulation. Compared to non-periodic white noises, periodic noises with repetition rates of 5-, 20-, and 40-Hz caused significantly increased SF amplitudes in both hemispheres. ASSR amplitudes were significantly enhanced for 20- and 40-Hz periodic noises in the right hemisphere while no enhancement was observed for periodic noises in the left hemisphere. The observed variation of the regularity effect between evoked response components and hemispheres may reflect the differences in the temporal integration window lengths adopted between ASSR and SF generators and also between the right and left auditory pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alho K, Connolly JF, Cheour M, Lehtokoski A, Huotilainen M, Virtanen J, Aulanko R, Ilmoniemi RJ (1998) Hemispheric lateralization in preattentive processing of speech sounds. Neurosci Lett 258(1):9–12

    Article  CAS  PubMed  Google Scholar 

  • Belin P, Zilbovicius M, Crozier S, Thivard L, Fontaine A, Masure MC, Samson Y (1998) Lateralization of speech and auditory temporal processing. J Cogn Neurosci 10(4):536–540

    Article  CAS  PubMed  Google Scholar 

  • Boemio A, Fromm S, Braun A, Poeppel D (2005) Hierarchical and asymmetric temporal sensitivity in human auditory cortices. Nat Neurosci 8(3):389–395. doi:10.1038/nn1409

    Article  CAS  PubMed  Google Scholar 

  • Chi T, Gao Y, Guyton MC, Ru P, Shamma S (1999) Spectro-temporal modulation transfer functions and speech intelligibility. J Acoust Soc Am 106(5):2719–2732

    Article  CAS  PubMed  Google Scholar 

  • Chi T, Ru P, Shamma SA (2005) Multiresolution spectrotemporal analysis of complex sounds. J Acoust Soc Am 118(2):887–906

    Article  PubMed  Google Scholar 

  • Dau T, Puschel D, Kohlrausch A (1996) A quantitative model of the “effective” signal processing in the auditory system. I. Model structure. J Acoust Soc Am 99(6):3615–3622

    Article  CAS  PubMed  Google Scholar 

  • Dau T, Kollmeier B, Kohlrausch A (1997) Modeling auditory processing of amplitude modulation. II. Spectral and temporal integration. J Acoust Soc Am 102(5 Pt 1):2906–2919

    Article  CAS  PubMed  Google Scholar 

  • De Boer E (1985) Auditory time constants: a paradox. Time resolution in auditory systems. Springer, Berlin, pp 141–158

    Chapter  Google Scholar 

  • Drullman R, Festen JM, Plomp R (1994a) Effect of reducing slow temporal modulations on speech reception. J Acoust Soc Am 95(5 Pt 1):2670–2680

    Article  CAS  PubMed  Google Scholar 

  • Drullman R, Festen JM, Plomp R (1994b) Effect of temporal envelope smearing on speech reception. J Acoust Soc Am 95(2):1053–1064

    Article  CAS  PubMed  Google Scholar 

  • Engelien A, Schulz M, Ross B, Arolt V, Pantev C (2000) A combined functional in vivo measure for primary and secondary auditory cortices. Hear Res 148(1–2):153–160

    Article  CAS  PubMed  Google Scholar 

  • Eulitz C, Diesch E, Pantev C, Hampson S, Elbert T (1995) Magnetic and electric brain activity evoked by the processing of tone and vowel stimuli. J Neurosci 15(4):2748–2755

    CAS  PubMed  Google Scholar 

  • Galambos R, Makeig S, Talmachoff PJ (1981) A 40-Hz auditory potential recorded from the human scalp. Proc Natl Acad Sci U S A 78(4):2643–2647

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Griffiths TD, Uppenkamp S, Johnsrude I, Josephs O, Patterson RD (2001) Encoding of the temporal regularity of sound in the human brainstem. Nat Neurosci 4(6):633–637. doi:10.1038/88459

    Article  CAS  PubMed  Google Scholar 

  • Gunji A, Koyama S, Ishii R, Levy D, Okamoto H, Kakigi R, Pantev C (2003) Magnetoencephalographic study of the cortical activity elicited by human voice. Neurosci Lett 348(1):13–16

    Article  CAS  PubMed  Google Scholar 

  • Gutschalk A, Uppenkamp S (2011) Sustained responses for pitch and vowels map to similar sites in human auditory cortex. Neuroimage 56(3):1578–1587. doi:10.1016/j.neuroimage.2011.02.026

    Article  PubMed  Google Scholar 

  • Gutschalk A, Patterson RD, Rupp A, Uppenkamp S, Scherg M (2002) Sustained magnetic fields reveal separate sites for sound level and temporal regularity in human auditory cortex. Neuroimage 15(1):207–216. doi:10.1006/nimg.2001.0949

    Article  PubMed  Google Scholar 

  • Hari R, Hamalainen M, Joutsiniemi SL (1989a) Neuromagnetic steady-state responses to auditory stimuli. J Acoust Soc Am 86(3):1033–1039

    Article  CAS  PubMed  Google Scholar 

  • Hari R, Hamalainen M, Kaukoranta E, Makela J, Joutsiniemi SL, Tiihonen J (1989b) Selective listening modifies activity of the human auditory cortex. Exp Brain Res 74(3):463–470

    Article  CAS  PubMed  Google Scholar 

  • Hewson-Stoate N, Schonwiesner M, Krumbholz K (2006) Vowel processing evokes a large sustained response anterior to primary auditory cortex. Eur J Neurosci 24(9):2661–2671. doi:10.1111/j.1460-9568.2006.05096.x

    Article  PubMed  Google Scholar 

  • Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6(2):65–70

    Google Scholar 

  • John MS, Dimitrijevic A, van Roon P, Picton TW (2001) Multiple auditory steady-state responses to AM and FM stimuli. Audiol Neurootol 6(1):12–27

    Article  CAS  PubMed  Google Scholar 

  • Keceli S, Inui K, Okamoto H, Otsuru N, Kakigi R (2012) Auditory sustained field responses to periodic noise. BMC Neurosci 13:7. doi:10.1186/1471-2202-13-7

    Article  PubMed Central  PubMed  Google Scholar 

  • Makela JP, Hari R (1987) Evidence for cortical origin of the 40 Hz auditory evoked response in man. Electroencephalogr Clin Neurophysiol 66(6):539–546

    Article  CAS  PubMed  Google Scholar 

  • Moore BCJ (2003) An introduction to the psychology of hearing, 5th edn. Academic Press, Boston

    Google Scholar 

  • Okamoto H, Stracke H, Bermudez P, Pantev C (2011) Sound processing hierarchy within human auditory cortex. J Cogn Neurosci 23(8):1855–1863. doi:10.1162/jocn.2010.21521

    Article  PubMed  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1):97–113

    Article  CAS  PubMed  Google Scholar 

  • Pantev C, Eulitz C, Elbert T, Hoke M (1994) The auditory evoked sustained field: origin and frequency dependence. Electroencephalogr Clin Neurophysiol 90(1):82–90

    Article  CAS  PubMed  Google Scholar 

  • Pantev C, Roberts LE, Elbert T, Ross B, Wienbruch C (1996) Tonotopic organization of the sources of human auditory steady-state responses. Hear Res 101(1–2):62–74

    Article  CAS  PubMed  Google Scholar 

  • Patel AD, Balaban E (2001) Human pitch perception is reflected in the timing of stimulus-related cortical activity. Nat Neurosci 4(8):839–844. doi:10.1038/90557

    Article  CAS  PubMed  Google Scholar 

  • Patterson R (2000) Auditory images: how complex sounds are represented in the auditory system. Acoust Sci Technol 21(4):183–190

    Google Scholar 

  • Patterson RD, Allerhand MH, Giguere C (1995) Time-domain modeling of peripheral auditory processing: a modular architecture and a software platform. J Acoust Soc Am 98(4):1890–1894

    Article  CAS  PubMed  Google Scholar 

  • Picton TW, Woods DL, Proulx GB (1978) Human auditory sustained potentials. II. Stimulus relationships. Electroencephalogr Clin Neurophysiol 45(2):198–210

    Article  CAS  PubMed  Google Scholar 

  • Picton TW, Skinner CR, Champagne SC, Kellett AJ, Maiste AC (1987) Potentials evoked by the sinusoidal modulation of the amplitude or frequency of a tone. J Acoust Soc Am 82(1):165–178

    Article  CAS  PubMed  Google Scholar 

  • Poeppel D (2003) The analysis of speech in different temporal integration windows: cerebral lateralization as ‘asymmetric sampling in time’. Speech Commun 41(1):245–255

    Article  Google Scholar 

  • Ross B, Pantev C (2004) Auditory steady-state responses reveal amplitude modulation gap detection thresholds. J Acoust Soc Am 115(5 Pt 1):2193–2206

    Article  PubMed  Google Scholar 

  • Ross B, Borgmann C, Draganova R, Roberts LE, Pantev C (2000) A high-precision magnetoencephalographic study of human auditory steady-state responses to amplitude-modulated tones. J Acoust Soc Am 108(2):679–691

    Article  CAS  PubMed  Google Scholar 

  • Ross B, Picton TW, Pantev C (2002) Temporal integration in the human auditory cortex as represented by the development of the steady-state magnetic field. Hear Res 165(1–2):68–84

    Article  PubMed  Google Scholar 

  • Ross B, Herdman AT, Pantev C (2005a) Right hemispheric laterality of human 40 Hz auditory steady-state responses. Cereb Cortex 15(12):2029–2039. doi:10.1093/cercor/bhi078

    Article  CAS  PubMed  Google Scholar 

  • Ross B, Herdman AT, Pantev C (2005b) Stimulus induced desynchronization of human auditory 40-Hz steady-state responses. J Neurophysiol 94(6):4082–4093. doi:10.1152/jn.00469.2005

    Article  CAS  PubMed  Google Scholar 

  • Seither-Preisler A, Patterson RD, Krumbholz K, Seither S, Lutkenhoner B (2006) From noise to pitch: transient and sustained responses of the auditory evoked field. Hear Res 218(1–2):50–63. doi:10.1016/j.heares.2006.04.005

    Article  CAS  PubMed  Google Scholar 

  • Shaw ME, Hamalainen MS, Gutschalk A (2013) How anatomical asymmetry of human auditory cortex can lead to a rightward bias in auditory evoked fields. Neuroimage 74:22–29. doi:10.1016/j.neuroimage.2013.02.002

    Article  PubMed  Google Scholar 

  • Supin A, Popov VV, Milekhina ON, Tarakanov MB (1999) Ripple depth and density resolution of rippled noise. J Acoust Soc Am 106(5):2800–2804

    Article  PubMed  Google Scholar 

  • Szymanski MD, Perry DW, Gage NM, Rowley HA, Walker J, Berger MS, Roberts TP (2001) Magnetic source imaging of late evoked field responses to vowels: toward an assessment of hemispheric dominance for language. J Neurosurg 94(3):445–453. doi:10.3171/jns.2001.94.3.0445

    Article  CAS  PubMed  Google Scholar 

  • Tallal P, Miller S, Fitch RH (1993) Neurobiological basis of speech: a case for the preeminence of temporal processing. Ann N Y Acad Sci 682:27–47

    Article  CAS  PubMed  Google Scholar 

  • Tesche CD, Uusitalo MA, Ilmoniemi RJ, Huotilainen M, Kajola M, Salonen O (1995) Signal-space projections of MEG data characterize both distributed and well-localized neuronal sources. Electroencephalogr Clin Neurophysiol 95(3):189–200

    Article  CAS  PubMed  Google Scholar 

  • Viemeister NF, Wakefield GH (1991) Temporal integration and multiple looks. J Acoust Soc Am 90(2 Pt 1):858–865

    Article  CAS  PubMed  Google Scholar 

  • Wang KS, Shamma S (1994) Self-normalization and noise-robustness in early auditory representations. IEEE Trans Speech Audio Process 2(3):421–435

    Article  Google Scholar 

  • Warren RM (2008) Auditory perception: an analysis and synthesis, 3rd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Yrttiaho S, Alku P, May PJ, Tiitinen H (2009) Representation of the vocal roughness of aperiodic speech sounds in the auditory cortex. J Acoust Soc Am 125(5):3177–3185. doi:10.1121/1.3097471

    Article  PubMed  Google Scholar 

  • Zatorre RJ, Belin P (2001) Spectral and temporal processing in human auditory cortex. Cereb Cortex 11(10):946–953

    Article  CAS  PubMed  Google Scholar 

  • Zatorre RJ, Evans AC, Meyer E (1994) Neural mechanisms underlying melodic perception and memory for pitch. J Neurosci 14(4):1908–1919

    CAS  PubMed  Google Scholar 

  • Zatorre RJ, Belin P, Penhune VB (2002) Structure and function of auditory cortex: music and speech. Trends Cogn Sci 6(1):37–46

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Yasuyuki Takeshima for technical support and Nurhan Erbil and Henning Teismann for their helpful comments. This study was supported in part by a scholarship award to the author SK from the College Women’s Association of Japan and in part by “Japan Society for the Promotion of Science for Young Scientists (23689070)” and “Strategic Research Program for Brain Sciences” (Development of biomarker candidates for social behavior).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumru Keceli.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keceli, S., Okamoto, H. & Kakigi, R. Hierarchical Neural Encoding of Temporal Regularity in the Human Auditory Cortex. Brain Topogr 28, 459–470 (2015). https://doi.org/10.1007/s10548-013-0300-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-013-0300-3

Keywords

Navigation