Skip to main content
Log in

On Turbulent Fluxes During Strong Winter Bora Wind Events

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Well known for its severity, the bora downslope windstorms have been extensively studied over the last several decades. This study focuses on the turbulence characteristics of bora at a topographically complex site near the eastern coast of the Adriatic Sea. For this purpose, a 3-month eddy-covariance dataset obtained at three levels (10, 22, 40 m) on a 60-m flux tower is used. After determining a suitable averaging time scale of 15 min using the fast Fourier transform and the ogive method, vertical fluxes of momentum and heat were calculated for 17 bora episodes. Up to a wind speed of \(12\,\mathrm {m\, s}^{-1}\), typical vertical profiles of momentum and heat were observed. However, for wind speeds >\(12\,\mathrm {m\, s}^{-1}\), several interesting observations arose. First, the nighttime heat flux at the 10-m level was often found to be positive rather negative. Second, vertical profiles of the momentum flux were larger at the 22-m level than at 10- and 40-m levels, mostly during nearly neutral to weakly stable thermal stratification. Third, these momentum flux profiles showed a large dependence on wind direction, with virtually no vertical transport of momentum for the largest observed wind speeds. For the first time, bora coherent structures have been analyzed using the so-called variable-interval time averaging (VITA) method. The method detected coherent structures in all three wind-speed components, with structure topologies similar to those observed over forest canopies. The momentum flux increase at the 22-m level, relative to the 10- and 40-m levels, is further supported by the VITA findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Babić K, Bencetić Klaić Z, Večenaj Ž (2012) Determining a turbulence averaging time scale by Fourier analysis for the nocturnal boundary layer. Geofizika 29(1):35–51

    Google Scholar 

  • Bajić A (1989) Severe bora on the northern Adriatic. Part I: Statistical analysis. Raspr-Pap 24:1–9

  • Bajić A (1991) Application of the two-layer hydraulic theory on the severe northern Adriatic bora. Meteor Rundschau 44:129–133

    Google Scholar 

  • Barthlott C, Drobinski P, Fesquet C, Dubos T, Pietras C (2007) Long-term study of coherent structures in the atmospheric surface layer. Boundary-Layer Meteorol 125(1):1–24

    Article  Google Scholar 

  • Bechmann A, Sørensen NN, Berg J, Mann J, Réthoré PE (2011) The Bolund experiment. Part II: Blind comparison of microscale flow models. Boundary-Layer Meteorol 141(2):245–271

    Article  Google Scholar 

  • Belušić D, Bencetić Klaić Z (2006) Mesoscale dynamics, structure and predictability of a severe Adriatic bora case. Meteorol Z 15(2):157–168

    Article  Google Scholar 

  • Belušić D, Mahrt L (2012) Is geometry more universal than physics in atmospheric boundary layer flow? J Geophys Res Atmos (1984–2012) 117:D09115

  • Belušić D, Pasarić M, Orlić M (2004) Quasi-periodic Bora gusts related to the structure of the troposphere. Q J R Meteorol Soc 130(598):1103–1121

    Article  Google Scholar 

  • Belušić D, Žagar M, Grisogono B (2007) Numerical simulation of pulsations in the bora wind. Q J R Meteorol Soc 133(627):1371–1388

    Article  Google Scholar 

  • Belušić D, Hrastinski M, Večenaj Ž, Grisogono B (2013) Wind regimes associated with a mountain gap at the northeastern Adriatic coast. J Appl Meteorol Clim 52(9):2089–2105

    Article  Google Scholar 

  • Bencetić Klaić Z, Belušić D, Grubišić V, Gabela L, Ćoso L (2003) Mesoscale airflow structure over the northern Croatian coast during MAP IOP-a major bora event. Geofizika 20(1):23–61

    Google Scholar 

  • Berg J, Mann J, Bechmann A, Courtney M, Jørgensen HE (2011) The Bolund Experiment, Part I: Flow over a steep, three-dimensional hill. Boundary-Layer Meteorol 141(2):219–243

    Article  Google Scholar 

  • Blackwelder R, Kaplan R (1976) On the wall structure of the turbulent boundary layer. J Fluid Mech 76(01):89–112

    Article  Google Scholar 

  • Bougeault P, Binder P, Buzzi A, Dirks R, Kuettner J, Houze R, Smith R, Steinacker R, Volkert H (2001) The MAP special observing period. Bull Am Meteorol Soc 82(3):433–462

    Article  Google Scholar 

  • Cava D, Schipa S, Giostra U (2005) Investigation of low-frequency perturbations induced by a steep obstacle. Boundary-Layer Meteorol 115(1):27–45

    Article  Google Scholar 

  • Diebold M, Higgins C, Fang J, Bechmann A, Parlange MB (2013) Flow over hills: a large-eddy simulation of the bolund case. Boundary-Layer Meteorol 148(1):177–194

    Article  Google Scholar 

  • Dupont S, Brunet Y, Finnigan J (2008) Large-eddy simulation of turbulent flow over a forested hill: validation and coherent structure identification. Q J R Meteorol Soc 134(636):1911–1929

    Article  Google Scholar 

  • Enger L, Grisogono B (1998) The response of bora-type flow to sea surface temperature. Q J R Meteorol Soc 124(548):1227–1244

    Article  Google Scholar 

  • Feigenwinter C, Vogt R (2005) Detection and analysis of coherent structures in urban turbulence. Theor Appl Climatol 81(3–4):219–230

    Article  Google Scholar 

  • Foken T, Wimmer F, Mauder M, Thomas C, Liebethal C (2006) Some aspects of the energy balance closure problem. Atmos Chem Phys 6(12):4395–4402

    Article  Google Scholar 

  • Fortuniak K, Pawlak W, Siedlecki M (2013) Integral turbulence statistics over a central European city centre. Boundary-Layer Meteorol 146(2):257–276

    Article  Google Scholar 

  • Gohm A, Mayr G (2005) Numerical and observational case-study of a deep Adriatic bora. Q J R Meteorol Soc 131(608):1363–1392

    Article  Google Scholar 

  • Grachev AA, Fairall CW, Persson POG, Andreas EL, Guest PS (2005) Stable boundary-layer scaling regimes: the SHEBA data. Boundary-Layer Meteorol 116(2):201–235

    Article  Google Scholar 

  • Grant ER, Ross AN, Gardiner BA, Mobbs SD (2015) Field observations of canopy flows over complex terrain. Boundary-Layer Meteorol 156(2):231–251

    Article  Google Scholar 

  • Grinsted A, Moore JC, Jevrejeva S (2004) Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process Geophys 11(5/6):561–566

    Article  Google Scholar 

  • Grisogono B, Belušić D (2009) A review of recent advances in understanding the meso-and microscale properties of the severe bora wind. Tellus A 61(1):1–16

    Article  Google Scholar 

  • Grubišić V (2004) Bora-driven potential vorticity banners over the Adriatic. Q J R Meteorol Soc 130(602):2571–2603

    Article  Google Scholar 

  • Grubišić V, Stiperski I (2009) Lee-wave resonances over double bell-shaped obstacles. J Atmos Sci 66(5):1205–1228

    Article  Google Scholar 

  • Helgason W, Pomeroy JW (2012) Characteristics of the near-surface boundary layer within a mountain valley during winter. J Appl Meteorol Clim 51(3):583–597

    Article  Google Scholar 

  • Högström U (1996) Review of some basic characteristics of the atmospheric surface layer. Boundary-Layer Meteorol 78:215–246

    Article  Google Scholar 

  • Horiguchi M, Hayashi T, Adachi A, Onogi S (2012) Large-scale turbulence structures and their contributions to the momentum flux and turbulence in the near-neutral atmospheric boundary layer observed from a 213-m tall meteorological tower. Boundary-Layer Meteorol 144(2):179–198

    Article  Google Scholar 

  • Horvath K, Bajić A, Ivatek-Šahdan S (2011) Dynamical downscaling of wind speed in complex terrain prone to bora-type flows. J Appl Meteorol Soc 50(8):1676–1691

    Google Scholar 

  • Horvath K, Lin YL, Ivančan-Picek B (2008) Classification of cyclone tracks over the Apennines and the Adriatic Sea. Mon Weather Rev 136(6):2210–2227

    Article  Google Scholar 

  • Horvath K, Fita L, Romero R, Ivančan-Picek B (2006) A numerical study of the first phase of a deep Mediterranean cyclone: Cyclogenesis in the lee of the Atlas Mountains. Meteorol Z 15(2):133–146

    Article  Google Scholar 

  • Horvath K, Ivatek-Šahdan S, Ivančan-Picek B, Grubišić V (2009) Evolution and structure of two severe cyclonic bora events: contrast between the northern and southern Adriatic. Weather Forecast 24(4):946–964

    Article  Google Scholar 

  • Horvath K, Koracin D, Vellore R, Jiang J, Belu R (2012) Sub-kilometer dynamical downscaling of near-surface winds in complex terrain using WRF and MM5 mesoscale models. J Geophys Res-Atmos (1984–2012) 117(D11). doi:10.1029/2011JD016447

  • Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen NC, Tung CC, Liu HH (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc Lond A 454(1971):903–995

    Article  Google Scholar 

  • Jeromel M, Vlado Malačič V, Rakovec J (2009) Weibull distribution of bora and sirocco winds in the northern Adriatic Sea. Geofizika 26(1):85–100

    Google Scholar 

  • Johansson AV, Alfredsson PH (1982) On the structure of turbulent channel flow. J Fluid Mech 122:295–314

    Article  Google Scholar 

  • Jurčec V (1981) On mesoscale characteristics of bora conditions in Yugoslavia. Weather and weather maps. Springer, New York, pp 640–657

    Google Scholar 

  • Kailas SV, Narasimha R (1994) Similarity in VITA-detected events in a nearly neutral atmospheric boundary layer. Proc R Soc Lond 447(1930):211–222

    Article  Google Scholar 

  • Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows: their structure and measurement. Oxford University Press, Oxford 304 pp

    Google Scholar 

  • Klemp J, Durran D (1987) Numerical modelling of bora winds. Meteorol Atmos Phys 36(1–4):215–227

    Article  Google Scholar 

  • Kral ST, Sjöblom A, Nygård T (2014) Observations of summer turbulent surface fluxes in a High Arctic fjord. Q J R Meteorol Soc 140(679):666–675

    Article  Google Scholar 

  • Krusche N, De Oliveira AP (2004) Characterization of coherent structures in the atmospheric surface layer. Boundary-Layer Meteorol 110(2):191–211

    Article  Google Scholar 

  • Kuettner J, O’Neill T (1981) ALPEX-the GARP mountain subprogram. Bull Am Meteorol Soc 62(6):793–805

    Google Scholar 

  • Lee X, Massman W, Law BE (2004) Handbook of micrometeorology: a guide for surface flux measurement and analysis. Kluwer Academic Publishers, Dordrecht 250 pp

    Google Scholar 

  • Lepri P, Kozmar H, Večenaj Ž, Grisogono B (2014) A summertime near-ground velocity profile of the Bora wind. Wind Struct 19(5):505–522

    Article  Google Scholar 

  • Lopes AS, Palma J, Castro F (2007) Simulation of the Askervein flow. Part 2: large-eddy simulations. Boundary-Layer Meteorol 125(1):85–108

    Article  Google Scholar 

  • Lundquist JK (2003) Intermittent and elliptical inertial oscillations in the atmospheric boundary layer. J Atmos Sci 60(21):2661–2673

    Article  Google Scholar 

  • Mahrt L (2007) The influence of nonstationarity on the turbulent flux-gradient relationship for stable stratification. Boundary-Layer Meteorol 125:245–264

    Article  Google Scholar 

  • Mahrt L, Gamage N (1987) Observations of turbulence in stratified flow. J Atmos Sci 44:1106–1121

    Article  Google Scholar 

  • Mason RA, Shirer HN, Wells R, Young GS (2002) Vertical transports by plumes within the moderately convective marine atmospheric surface layer. J Atmos Sci 59(8):1337–1355

    Article  Google Scholar 

  • Metzger M, Holmes H (2008) Time scales in the unstable atmospheric surface layer. Boundary-Layer Meteorol 126(1):29–50

    Article  Google Scholar 

  • Moncrieff J, Clement R, Finnigan J, Meyers T (2004) Averaging, detrending, and filtering of eddy covariance time series. Handbook of micrometeorology. Springer, New York, pp 7–31

    Google Scholar 

  • Monin A, Obukhov A (1954) Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib Geophys Inst Acad Sci USSR 151:163–187

    Google Scholar 

  • Moreira GA, Dos Santos AA, Do Nascimento CA, Valle RM (2012) Numerical study of the neutral atmospheric boundary layer over complex terrain. Boundary-Layer Meteorol 143(2):393–407

    Article  Google Scholar 

  • Nadeau DF, Pardyjak ER, Higgins CW, Parlange MB (2013) Similarity scaling over a steep alpine slope. Boundary-Layer Meteorol 147(3):401–419

    Article  Google Scholar 

  • Oncley SP, Friehe CA, Larue JC, Businger JA, Itsweire EC, Chang SS (1996) Surface-layer fluxes, profiles, and turbulence measurements over uniform terrain under near-neutral conditions. J Atmos Sci 53(7):1029–1044

    Article  Google Scholar 

  • Petkovšek Z (1976) Periodicity of bora gusts. Razpr–Pap SMD 20:67–75

  • Petkovšek Z (1982) Gravity waves and bora gusts. Ann Meteorol (NF) 19:108–110

    Google Scholar 

  • Petkovšek Z (1987) Main bora gusts—a model explanation. Geofizika 4:41–50

    Google Scholar 

  • Poje D (1992) Wind persistence in Croatia. Int J Climatol 12(6):569–586

    Article  Google Scholar 

  • Reynolds O (1894) On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Proc R Soc Lond 56(336–339):40–45

    Article  Google Scholar 

  • Robinson SK (1991) Coherent motions in the turbulent boundary layer. Annu Rev Fluid Mech 23(1):601–639

    Article  Google Scholar 

  • Segalini A, Alfredsson PH (2012) Techniques for the eduction of coherent structures from flow measurements in the atmospheric boundary layer. Boundary-Layer Meteorol 143(3):433–450

    Article  Google Scholar 

  • Smith RB (1987) Aerial observations of the Yugoslavian bora. J Atmos Sci 44(2):269–297

    Article  Google Scholar 

  • Stull RB (1988) An introduction to boundary layer meteorology. Kluwer Academic Publishers, Dordrecht 666 pp

    Book  Google Scholar 

  • Thomas C, Foken T (2007) Flux contribution of coherent structures and its implications for the exchange of energy and matter in a tall spruce canopy. Boundary-Layer Meteorol 123(2):317–337

    Article  Google Scholar 

  • Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79(1):61–78

    Article  Google Scholar 

  • Undheim O, Andersson H, Berge E (2006) Non-linear, microscale modelling of the flow over Askervein Hill. Boundary-Layer Meteorol 120(3):477–495

    Article  Google Scholar 

  • Van der Hoven I (1957) Power spectrum of horizontal wind speed in the frequency range from 0.0007 to 900 cycles per hour. J Meteorol 14(2):160–164

    Article  Google Scholar 

  • Večenaj Ž, Belušić D, Grisogono B (2010) Characteristics of the near-surface turbulence during a bora event. Ann Geophys 28:155–163

    Article  Google Scholar 

  • Večenaj Ž, De Wekker SFJ (2014) Determination of non-stationarity in the surface layer during the T-REX experiment. Q J R Meteorol Soc 141(690):1560–1571

    Article  Google Scholar 

  • Večenaj Ž, De Wekker SFJ, Grubišić V (2011) Near-surface characteristics of the turbulence structure during a mountain-wave event. J Appl Meteorol Clim 50(5):1088–1106

    Article  Google Scholar 

  • Večenaj Ž, Belušić D, Grubišić V, Grisogono B (2012) Along-coast features of bora-related turbulence. Boundary-Layer Meteorol 143(3):527–545

    Article  Google Scholar 

  • Vickers D, Mahrt L (1997) Quality control and flux sampling problems for tower and aircraft data. J Atmos Ocean Tech 14(3):512–526

    Article  Google Scholar 

  • Vickers D, Mahrt L (2006) A solution for flux contamination by mesoscale motions with very weak turbulence. Boundary-Layer Meteorol 118(3):431–447

    Article  Google Scholar 

  • Whiteman CD (2000) Mountain meteorology: fundamentals and applications. Oxford University Press, Oxford 355 pp

    Google Scholar 

  • Wilczak JM, Oncley SP, Stage SA (2001) Sonic anemometer tilt correction algorithms. Boundary-Layer Meteorol 99(1):127–150

    Article  Google Scholar 

  • Yoshino M (1976) Local wind bora: a research summary. University of Tokyo Press, Tokyo, pp 277–282

  • Zeri M, Sá LDdA (2011) Scale dependence of coherent structures’ contribution to the daytime buoyancy heat flux over the Pantanal wetland, Brazil. Atmos Sci Lett 12(2):200–206

    Article  Google Scholar 

Download references

Acknowledgments

Two anonymous reviewers are acknowledged for their valuable comments that led to a significant improvement of the manuscript. This study was funded by the Croatian Science Foundation project CATURBO, No. 09/151 , and the Croatian Ministry of Science, Education and Sports project BORA, No. 119-1193086-1311. Tower measurement campaign at Pometeno Brdo was organized within the UKF grant 16/8A WINDEX (www.windex.hr), in collaboration with BORA grant. This work was also partially supported by the EU grant WILL4WIND (www.will4wind.hr), contract no. IPA2007-HR-16IPO-001-040507. This work was also partially supported by Office of Naval Research award N00014-11-1-0709 and by NSF Grant ATM-1151445. We thank Sandip Pal for useful discussions. Temple R. Lee is acknowledged for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nevio Babić.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babić, N., Večenaj, Ž., Kozmar, H. et al. On Turbulent Fluxes During Strong Winter Bora Wind Events. Boundary-Layer Meteorol 158, 331–350 (2016). https://doi.org/10.1007/s10546-015-0088-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-015-0088-7

Keywords

Navigation