Skip to main content
Log in

On the Development of a Dynamic Non-linear Closure for Large-Eddy Simulation of the Atmospheric Boundary Layer

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

A dynamic procedure is developed to compute the model coefficients in the recently introduced modulated gradient models for both momentum and scalar fluxes. The magnitudes of the subgrid-scale (SGS) stress and the SGS flux are estimated using the local equilibrium hypothesis, and their structures (relative magnitude of each of the components) are given by the normalized gradient terms, which are derived from the Taylor expansion of the exact SGS stress/flux. Previously, the two model coefficients have been specified on the basis of theoretical arguments. Here, we develop a dynamic SGS procedure, wherein the model coefficients are computed dynamically according to the statistics of the resolved turbulence, rather than provided a priori or ad hoc. Results show that the two dynamically calculated coefficients have median values that are approximately constant throughout the turbulent atmospheric boundary layer (ABL), and their fluctuations follow a near log-normal distribution. These findings are consistent with the fact that, unlike eddy-viscosity/diffusivity models, modulated gradient models have been found to yield satisfactory results even with constant model coefficients. Results from large-eddy simulations of a neutral ABL and a stable ABL using the new closure show good agreement with reference results, including well-established theoretical predictions. For instance, the closure delivers the expected surface-layer similarity profiles and power-law scaling of the power spectra of velocity and scalar fluctuations. Further, the Lagrangian version of the model is tested in the neutral ABL case, and gives satisfactory results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. The solution is \(k_\mathrm{sgs} = \frac{{{\widetilde{\Delta }}}^2}{C_\varepsilon ^2} \left[ \left( -\frac{{\widetilde{G}}_{ij}}{{\widetilde{G}}_{kk}} {\widetilde{S}}_{ij}\right) - \sqrt{\left( -\frac{{\widetilde{G}}_{ij}}{{\widetilde{G}}_{kk}} {\widetilde{S}}_{ij}\right) ^2+\sqrt{2} \frac{C_\varepsilon }{{\widetilde{\Delta }}}\frac{g}{\Theta _0} \theta _\mathrm{sgs} \left( \frac{{\widetilde{G}}_{\theta ,3}}{|{\widetilde{\mathbf{G}}}_{\theta }|}\right) } \right] ^2 \).

References

  • Albertson JD, Parlange MB (1999) Natural integration of scalar fluxes from complex terrain. Adv Water Resour 23:239–252

    Article  Google Scholar 

  • Andren A, Brown AR, Graf J, Mason PJ, Moeng CH, Nieuwstadt FTM, Schumann U (1994) Large-eddy simulation of a neutrally stratified boundary layer: a comparison of four computer codes. Q J R Meteorol Soc 120(520):1457–1484

    Article  Google Scholar 

  • Basu S, Porté-Agel F (2006) Large-eddy simulation of stably stratified atmospheric boundary layer turbulence: a scale-dependent dynamic modelling approach. J Atmos Sci 63:2074–2091

    Article  Google Scholar 

  • Beare RJ, MacVean MK (2004) Resolution sensitivity and scaling of large-eddy simulations of the stable boundary layer. Boundary-Layer Meteorol 112(2):257–281

    Article  Google Scholar 

  • Beare RJ, MacVean MK, Holtslag AAM, Cuxart J, Esau I, Golaz JC, Jimenez MA, Khairoutdinov M, Kosovic B, Lewellen D, Lund TS, Lundquist JK, McCabe A, Moene AF, Noh Y, Raasch S, Sullivan P (2006) An intercomparison of large-eddy simulations of the stable boundary layer. Boundary-Layer Meteorol 118(2):247–272

    Article  Google Scholar 

  • Beljaars ACM, Holtslag AAM (1991) Flux parameterization over land surfaces for atmospheric models. J Appl Meteorol 30:327–341

    Article  Google Scholar 

  • Bou-Zeid E, Meneveau C, Parlange M (2005) A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows. Phys Fluids 17:025105

    Article  Google Scholar 

  • Businger JA, Wynagaard JC, Izumi Y, Bradley EF (1971) Flux–profile relationships in the atmospheric surface layer. J Atmos Sci 28:181–189

    Article  Google Scholar 

  • Cambon C, Mansour NN, Godeferd FS (1997) Energy transfer in rotating turbulence. J Fluid Mech 337:303–332

    Article  Google Scholar 

  • Canuto C, Hussaini MY, Quarteroni A, Zang TA (1988) Spectral methods in fluid dynamics. Springer, Berlin, 567 pp

  • Chamecki M (2010) Modeling subgrid-scale heat fluxes in the neutral and stratified atmospheric boundary layer. J Turbul 11(13):1–16

    Google Scholar 

  • Cheng WC, Porté-Agel F (2013) Evaluation of subgrid-scale models in large-eddy simulation of flow past a two-dimensional block. Int J Heat Fluid Flow 44:301–311

    Article  Google Scholar 

  • Chow FK, Street RL, Xue M, Ferziger JH (2005) Explicit filtering and reconstruction turbulence modelling for large-eddy simulation of neutral boundary layer flow. J Atmos Sci 62:2058–2077

    Article  Google Scholar 

  • Chumakov SG, Rutland CJ (2005) Dynamic structure subgrid-scale models for large eddy simulation. Int J Numer Methods Fluids 47:911–923

    Article  Google Scholar 

  • Clark RA, Ferziger JH, Reynolds WC (1979) Evaluation of subgrid-scale models using an accurately simulated turbulent flow. J Fluid Mech 91(1):1–16

    Article  Google Scholar 

  • Deardorff JW (1970) A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J Fluid Mech 41:453–480

    Article  Google Scholar 

  • Deardorff JW (1972) Numerical investigation of neutral and unstable planetary boundary layers. J Atmos Sci 29:91–115

    Article  Google Scholar 

  • Germano M, Piomelli U, Cabot WH (1991) A dynamic subgrid-scale eddy viscosity model. Phys Fluids A 3(7):1760–1765

    Article  Google Scholar 

  • Higgins CW, Parlange MB, Meneveau C (2003) Alignment trends of velocity gradients and subgrid-scale fluxes in the turbulent atmospheric boundary layer. Boundary-Layer Meteorol 109(1):59–83

    Article  Google Scholar 

  • Holtslag B (2006) Preface: GEWEX atmospheric boundary-layer study GABLS on stable boundary layers. Boundary-Layer Meteorol 118(2):243–246

    Article  Google Scholar 

  • Horiuti K (2006) Transformation properties of dynamic subgrid-sale models in a frame of reference undergoing rotation. J Turbul 7(16):1–27

    Google Scholar 

  • Jiménez C, Ducros F, Cuenot B, Bédat B (2001) Subgrid scale variance and dissipation of a scalar field in large eddy simulations. Phys Fluids 13(6):1748–1754

    Article  Google Scholar 

  • Juneja A, Brasseur JG (1999) Characteristics of subgrid-resolved-scale dynamics in anisotropic turbulence, with application to rough-wall boundary layers. Phys Fluids 11(10):3054–3068

    Article  Google Scholar 

  • Katul GG, Chu CR (1998) A theoretical and experimental investigation of energy-containing scales in the dynamic sublayer of boundary-layer flows. Boundary-Layer Meteorol 86(2):279–312

    Article  Google Scholar 

  • Khanna S, Brasseur JG (1998) Three-dimensional buoyancy- and shear-induced local structure of the atmospheric boundary layer. J Atmos Sci 55:710–743

    Article  Google Scholar 

  • Kim J, Moin P (1987) Transport of passive scalars in a turbulent channel flow. In: Proceedings of the 6th international symposium on turbulent shear flows, Toulouse, France, 7–9 September 1987. Springer, Berlin

  • Kobayashi H, Shimomura Y (2001) The performance of dynamic subgrid-scale models in the large eddy simulation of rotating homogeneous turbulence. Phys Fluids 13(8):2350–2360

    Article  Google Scholar 

  • Kong H, Choi H, Lee JS (2000) Direct numerical simulation of turbulent thermal boundary layers. Phys Fluids 12(10):2555–2568

    Article  Google Scholar 

  • Kosović B (1997) Subgrid-scale modelling for the large-eddy simulation of high-Reynolds-number boundary layers. J Fluid Mech 336:151–182

    Article  Google Scholar 

  • Kosović B, Curry JA (2000) A large eddy simulation study of a quasi-steady, stably stratified atmospheric boundary layer. J Atmos Sci 57:1052–1068

    Article  Google Scholar 

  • Kunkel GJ, Marusic I (2006) Study of the near-wall-turbulent region of the high-Reynolds-number boundary layer using an atmospheric flow. J Fluid Mech 548:375–402

    Article  Google Scholar 

  • Lilly DK (1992) A proposed modification of the Germano subgrid-scale closure method. Phys Fluids 4(3):633–635

    Article  Google Scholar 

  • Liu S, Meneveau C, Katz J (1994) On the properties of similarity subgrid-scale models as deduced from measurements in a turbulent jet. J Fluid Mech 275:83–119

    Article  Google Scholar 

  • Lu H (2011) Assessment of the modulated gradient model in decaying isotropic turbulence. Theor Appl Mech Lett 1:041004

    Article  Google Scholar 

  • Lu H, Porté-Agel F (2010) A modulated gradient model for large-eddy simulation: application to a neutral atmospheric boundary layer. Phys Fluids 22:015109

    Article  Google Scholar 

  • Lu H, Porté-Agel F (2011) Large-eddy simulation of a very large wind farm in a stable atmospheric boundary layer. Phys Fluids 23:065101

    Article  Google Scholar 

  • Lu H, Porté-Agel F (2013) A modulated gradient model for scalar transport in large-eddy simulation of the atmospheric boundary layer. Phys Fluids 25:015110

    Article  Google Scholar 

  • Lu H, Rutland CJ, Smith LM (2007) A priori tests of one-equation LES modelling of rotating turbulence. J Turbul 8(37):1–27

    Google Scholar 

  • Lu H, Rutland CJ, Smith LM (2008) A posteriori tests of one-equation LES modelling of rotating turbulence. Int J Mod Phys C 19:1949–1964

    Article  Google Scholar 

  • Mason PJ (1989) Large-eddy simulation of the convective atmospheric boundary layer. J Atmos Sci 46(11):1492–1516

    Article  Google Scholar 

  • Mason PJ, Thomson DJ (1992) Stochastic backscatter in large-eddy simulations of boundary layers. J Fluid Mech 242:51–78

    Article  Google Scholar 

  • Meneveau C, Lund TS, Cabot WH (1996) A Lagrangian dynamic subgrid-scale model of turbulence. J Fluid Mech 319:353–385

    Article  Google Scholar 

  • Menon S, Yeung PK, Kim WW (1996) Effect of subgrid models on the computed interscale energy transfer in isotropic turbulence. Comput Fluids 25(2):165–180

    Article  Google Scholar 

  • Nieuwstadt FTM (1985) A model for the stationary, stable boundary layer. In: Hunt JCR (ed) Turbulence and diffusion in stable environments. Oxford University Press, Oxford, pp 149–179

    Google Scholar 

  • Perry AE, Henbest S, Chong MS (1986) A theoretical and experimental study of wall turbulence. J Fluid Mech 165:163–199

    Article  Google Scholar 

  • Piomelli U (1993) High Reynolds number calculations using the dynamic subgrid-scale stress model. Phys Fluids 5:1484–1490

    Article  Google Scholar 

  • Porté-Agel F (2004) A scale-dependent dynamic model for scalar transport in large-eddy simulations of the atmospheric boundary layer. Boundary-Layer Meteorol 112(1):81–105

    Article  Google Scholar 

  • Porté-Agel F, Meneveau C, Parlange MB (2000) A scale-dependent dynamic model for large-eddy simulation: application to a neutral atmospheric boundary layer. J Fluid Mech 415:261–284

    Article  Google Scholar 

  • Porté-Agel F, Meneveau C, Parlange MB, Eichinger WE (2001) A priori field study of the subgrid-scale heat fluxes and dissipation in the atmospheric surface layer. J Atmos Sci 58:2673–2698

    Article  Google Scholar 

  • Saddoughi SG, Veeravalli SV (1994) Local isotropy in turbulent boundary layers at high Reynolds number. J Fluid Mech 268:333–372

    Article  Google Scholar 

  • Sagaut P (2006) Large eddy simulation for incompressible flows, 3rd edn. Springer, Berlin, 556 pp

  • Smagorinsky J (1963) General circulation experiments with the primitive equations: I the basic experiment. Mon Weather Rev 91(3):99–164

    Article  Google Scholar 

  • Smith LM, Waleffe F (1999) Transfer of energy to two-dimensional large scales in forced, rotating three-dimensional turbulence. Phys Fluids 11(6):1608–1622

    Article  Google Scholar 

  • Stoll R, Porté-Agel F (2006a) Effect of roughness on surface boundary conditions for large-eddy simulation. Boundary-Layer Meteorol 118(1):169–187

    Article  Google Scholar 

  • Stoll R, Porté-Agel F (2006b) Dynamic subgrid-scale models for momentum and scalar fluxes in large-eddy simulations of neutrally stratified atmospheric boundary layers over heterogeneous terrain. Water Resour Res 42:W01409

    Article  Google Scholar 

  • Stoll R, Porté-Agel F (2008) Large-eddy simulation of the stable atmospheric boundary layer using dynamic models with different averaging schemes. Boundary-Layer Meteorol 126(1):1–28

    Article  Google Scholar 

  • Stull RB (1988) An introduction to boundary-layer meteorology. Kluwer, Dordrecht, 666 pp

  • Sullivan PE, McWilliams JC, Moeng CH (1994) A subgrid-scale model for large-eddy simulation of planetary boundary-layer flows. Boundary-Layer Meteorol 71(3):247–276

    Article  Google Scholar 

  • Townsend AA (1976) The structure of turbulent shear flow, 2nd edn. Cambridge University Press, Cambridge, 429 pp

  • Venugopal V, Porté-Agel F, Foufoula-Georgiou E, Carper M (2003) Multiscale interactions between surface shear stress and velocity in turbulent boundary layers. J Geophys Res 108:4613

    Article  Google Scholar 

  • von Kármán T (1931) Mechanical similitude and turbulence. Technical memorandum no 611, NACA, Washington, DC

Download references

Acknowledgments

This research was supported by the Swiss National Science Foundation (Grants 200021_132122 and IZERZ0_142236), and the US National Science Foundation (Grant ATM-0854766). Computing resources were provided by the Minnesota Supercomputing Institute and the Swiss National Supercomputing Centre. The authors wish to thank the editor and the anonymous reviewer for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Porté-Agel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, H., Porté-Agel, F. On the Development of a Dynamic Non-linear Closure for Large-Eddy Simulation of the Atmospheric Boundary Layer. Boundary-Layer Meteorol 151, 429–451 (2014). https://doi.org/10.1007/s10546-013-9906-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-013-9906-y

Keywords

Navigation