Skip to main content
Log in

A New Sensitivity Analysis and Solution Method for Scintillometer Measurements of Area-Averaged Turbulent Fluxes

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Iteration, like friction, is likely to generate heat instead of progress. - George Eliot

Abstract

Scintillometer measurements of the turbulence inner-scale length \(l_\mathrm{o }\) and refractive index structure function \(C_n^2\) allow for the retrieval of large-scale area-averaged turbulent fluxes in the atmospheric surface layer. This retrieval involves the solution of the non-linear set of equations defined by the Monin–Obukhov similarity hypothesis. A new method that uses an analytic solution to the set of equations is presented, which leads to a stable and efficient numerical method of computation that has the potential of eliminating computational error. Mathematical expressions are derived that map out the sensitivity of the turbulent flux measurements to uncertainties in source measurements such as \(l_\mathrm{o }\). These sensitivity functions differ from results in the previous literature; the reasons for the differences are explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Global partial derivatives are those that propagate from the dependent (derived) variable down to the independent (source measurement) variable through the entire tree diagram, whereas local partial derivatives propagate as if the equation being differentiated were independent of the rest of the equations in the set. An alternative to direct evaluation of global partial derivatives via the chain rule is a total-differential expansion (where all derivatives are local) of each equation in the set. This approach can be used to solve for global partial derivatives by re-grouping all total-differential terms into one equation. Readers may refer to Sokolnikoff (1939).

References

  • Agarwal RP, Meehan M, O’Regan D (2001) Fixed point theory and applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Andreas EL (1988) Estimating \(C_n^2\) over snow and sea ice from meteorological data. J Opt Soc Am A 5:481–495

    Article  Google Scholar 

  • Andreas EL (1989) Two-wavelength method of measuring path-averaged turbulent surface heat fluxes. J Atmos Oceanic Technol 6:280–292

    Article  Google Scholar 

  • Andreas EL (1990) Three-wavelength method of measuring path-averaged turbulent heat fluxes. J Atmos Oceanic Technol 7(6):801–814

    Article  Google Scholar 

  • Andreas EL (1992) Uncertainty in a path averaged measurement of the friction velocity \(u_\star \). J Appl Meteorol 31:1312–1321

    Article  Google Scholar 

  • Andreas EL (2012) Two experiments on using a scintillometer to infer the surface fluxes of momentum and sensible heat. J Appl Meteorol Climatol 51:1685–1701

    Article  Google Scholar 

  • Beyrich F, deBruin HAR, Meijninger WML, Schipper JW, Lohse H (2002) Results from one-year continuous operation of a large aperture scintillometer over a heterogeneous land surface. Boundary-Layer Meteorol 105:85–87

    Article  Google Scholar 

  • deBruin HAR, Meijninger WML, Smedman A-S, Magnusson M (2002) Dispaced-beam small aperture scintillometer test. Part I: The WINTEX data-set. Boundary-Layer Meteorol 105:129–148

    Article  Google Scholar 

  • Edwards HM (1984) Galois theory. Springer graduate texts in mathematics, Berlin, 185 pp

  • Foken T, Mauder M, Liebethal C, Wimmer F, Beyrich F, Leps J-P, Raasch S, deBruin HAR, Meijninger WML, Bange J (2010) Energy balance closure for the LITFASS-2003 experiment. Theor Appl Climatol 101:149–160

    Article  Google Scholar 

  • Hartogensis OK, deBruin HAR, Van de Wiel BJH (2002) Dispaced-beam small aperture scintillometer test. Part II: CASES-99 stable boundary-layer experiment. Boundary-Layer Meteorol 105:149–176

    Article  Google Scholar 

  • Hartogensis OK, Watts CJ, Rodriguez J-C, deBruin HAR (2003) Derivation of an effective height for scintillometers: La Poza experiment in Northwest Mexico. J Hydrometeorol 4:915–928

    Article  Google Scholar 

  • Hill RJ (1988) Comparison of scintillation methods for measuring the inner scale of turbulence. Appl Opt 27(11):2187–2193

    Article  Google Scholar 

  • Hill RJ (1989) Implications of Monin–Obukhov similarity theory for scalar quantities. J Atmos Sci 46:2236–2244

    Article  Google Scholar 

  • Hill RJ, Ochs GR, Wilson JJ (1992) Heat and momentum using optical scintillation. Boundary-Layer Meteorol 58:391–408

    Article  Google Scholar 

  • Hoedjes JCB, Zuurbier RM, Watts CJ (2002) Large aperture scintillometer used over a homogeneous irrigated area, partly affected by regional advection. Boundary-Layer Meteorol 105:99–117

    Article  Google Scholar 

  • Kleissl J, Gomez J, Hong S-H, Hendrickx JMH, Rahn T, Defoor WL (2008) Large aperture scintillometer intercomparison study. Boundary-Layer Meteorol 128:133–150

    Article  Google Scholar 

  • Lagouarde JP, Bonnefond JM, Kerr YH, McAneney KJ, Irvine M (2002) Integrated sensible heat flux measurements of a two-surface composite landscape using scintillometry. Boundary-Layer Meteorol 105:5–35

    Article  Google Scholar 

  • Liu SM, Xu ZW, Wang WZ, Jia ZZ, Zhu MJ, Bai J, Wang JM (2011) A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem. Hydrol Earth Syst Sci 15:1291–1306

    Article  Google Scholar 

  • Marx A, Kunstmann H, Schüttemeyer D, Moene AF (2008) Uncertainty analysis for satellite derived sensible heat fluxes and scintillometer measurements over savannah environment and comparison to mesoscale meteorological simulation results. Agric For Meteorol 148:656–667

    Article  Google Scholar 

  • Mason PJ (1987) The formation of areally-averaged roughness lengths. Q J R Meteorol Soc 114:399–420

    Article  Google Scholar 

  • Meijninger WML, Hartogensis OK, Kohsiek W, Hoedjes JCB, Zuurbier RM, deBruin HAR (2002) Determination of area-averaged sensible heat fluxes with a large aperture scintillometer over a heterogeneous surface—Flevoland field experiment. Boundary-Layer Meteorol 105:37–62

    Article  Google Scholar 

  • Moroni C, Navarra A, Guzzi R (1990) Estimation of the turbulent fluxes in the surface layer using the inertial dissipative method: a Monte Carlo Error analysis. Appl Opt 6:2187–2193

    Google Scholar 

  • Panofsky HA, Dutton JA (1984) Atmospheric turbulence: models and methods for engineering applications. Wiley, New York

    Google Scholar 

  • Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in Fortran: the art of scientific computing, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Sasiela RJ (1994) Electromagnetic wave propagation in turbulence: evaluation and application of Mellin transforms. Springer, Berlin

    Book  Google Scholar 

  • Sokolnikoff IS (1939) Advanced calculus. McGraw-Hill Book Company, New York

    Google Scholar 

  • Solignac PA, Brut A, Selves J-L, Béteille J-P, Gastellu-Etchegorry J-P, Keravec P, Béziat P, Ceschia E (2009) Uncertainty analysis of computational methods for deriving sensible heat flux values from scintillometer measurements. Atmos Meas Technol 2:741–753

    Article  Google Scholar 

  • Sorbjan Z (1989) Structure of the atmospheric boundary layer. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Tatarski VI (1961) Wave propagation in a turbulent medium. McGraw-Hill Book Company, New York

    Google Scholar 

  • Taylor J (1997) An introduction to error analysis: the study of uncertainties in physical measurements, 2nd edn. University Science Books, Sausalito

    Google Scholar 

  • Traub JF (1964) Iterative methods for the solution of equations. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Wieringa J (1986) Roughness-dependent geographical interpolation of surface wind speed averages. Q J R Meteorol Soc 112:867–889

    Article  Google Scholar 

  • Wyngaard JC, Coté OR (1971) The budgets of turbulent kinetic energy and temperature variance in the atmospheric surface layer. J Atmos Sci 28:190–201

    Article  Google Scholar 

  • Wyngaard JC, Izumi Y (1971) Behavior of the refractive index structure parameter near the ground. J Opt Soc Am 61:1646–1650

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Geophysical Institute at the University of Alaska Fairbanks for its support, Derek Starkenburg and Peter Bieniek for assistance with editing, two anonymous reviewers, one in particular, for very helpful comments. In addition, the authors thank Flora Grabowska of the Mather library for her determination in securing funding for open access fees. GJ Fochesatto was partially supported by the Alaska Space Grant NASA-EPSCoR program award number NNX10N02A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilberto J. Fochesatto.

Appendices

Appendix A: Relations Between \(M\) and \(\zeta \)

$$\begin{aligned} M&= \frac{\zeta ^3}{(1+d(-\zeta )^{2/3})^3(1-b\zeta )},\end{aligned}$$
(54)
$$\begin{aligned} \left( \frac{\partial \zeta }{\partial M}\right)&= \left( \frac{(1\!-\!b\zeta )(1\!+\!d(-\zeta )^{2/3})^3}{3\zeta ^2\!+\!M[2d(1\!-\!b\zeta )(1 \!+\!d(-\zeta )^{2/3})^2(-\zeta )^{-1/3}\!+\!b(1\!+\!d(-\zeta )^{2/3})^3]}\right) , \end{aligned}$$
(55)
$$\begin{aligned} M\left( \frac{\partial \zeta }{\partial M}\right)&= \left( \frac{\zeta (1-b\zeta )(1+d(-\zeta )^{2/3})}{(3-2b\zeta )(1+d(-\zeta )^{2/3}) +2d\zeta (-\zeta )^{-1/3}(1-b\zeta )} \right) . \end{aligned}$$
(56)

Appendix B: Individual Terms in \(S_{T_\star ,\epsilon }\) for Unstable Conditions (\(\zeta <0\))

$$\begin{aligned} \left( \frac{\partial T_\star }{\partial \zeta }\right)&= T_\star \left( \frac{-b}{3(1-b\zeta )}\right) , \end{aligned}$$
(57)
$$\begin{aligned} \left( \frac{\partial M}{\partial \epsilon }\right)&= -2M/\epsilon . \end{aligned}$$
(58)

Appendix C: Individual Terms in \(S_{T_\star ,z}\) for Unstable Conditions (\(\zeta <0\))

$$\begin{aligned} \left( \frac{\partial T_\star }{\partial z}\right) _\zeta&= \frac{T_\star }{3z}, \end{aligned}$$
(59)
$$\begin{aligned} \left( \frac{\partial T_\star }{\partial \zeta }\right) _z&= T_\star \left( \frac{-b}{3(1-b\zeta )}\right) , \end{aligned}$$
(60)
$$\begin{aligned} \left( \frac{\partial M}{\partial z}\right)&= 2M/z. \end{aligned}$$
(61)

Appendix D: Individual Terms in \(S_{u_\star ,\epsilon }\) for Unstable Conditions (\(\zeta <0\))

$$\begin{aligned} \left( \frac{\partial u_\star }{\partial \epsilon }\right) _\zeta&= \frac{u_\star }{3\epsilon }, \end{aligned}$$
(62)
$$\begin{aligned} \left( \frac{\partial u_\star }{\partial \zeta }\right) _\epsilon&= u_\star \left( \frac{d}{3(1+d(-\zeta )^{2/3})(-\zeta )^{1/3}}\right) ,\end{aligned}$$
(63)
$$\begin{aligned} \left( \frac{\partial M}{\partial \epsilon }\right)&= -2M/\epsilon . \end{aligned}$$
(64)

Appendix E: Individual Terms in \(S_{u_\star ,z}\) for Unstable Conditions (\(\zeta <0\))

$$\begin{aligned} \left( \frac{\partial u_\star }{\partial z}\right) _\zeta&= \frac{u_\star }{3z}, \end{aligned}$$
(65)
$$\begin{aligned} \left( \frac{\partial u_\star }{\partial \zeta }\right) _z&= u_\star \left( \frac{d}{3(1+d(-\zeta )^{2/3})(-\zeta )^{1/3}}\right) , \end{aligned}$$
(66)
$$\begin{aligned} \left( \frac{\partial M}{\partial z}\right)&= 2M/z. \end{aligned}$$
(67)

Appendix F: Total Differential Expansion as in Andreas (1992) for Unstable Conditions (\(\zeta <0\))

Here we reproduce the analysis of Andreas (1992). Subscripts indicate the equation that is being differentiated locally. The coupled equations are

$$\begin{aligned} \zeta&= \frac{zgk}{u_\star ^2 T}\left( T_\star +\frac{0.61T}{\rho +0.61q}q_\star \right) , \end{aligned}$$
(68)
$$\begin{aligned} \epsilon&= \frac{u_\star ^3}{\kappa z}\phi (\zeta ) = \frac{u_\star ^3}{\kappa z}(1+d(-\zeta )^{2/3})^{3/2} , \end{aligned}$$
(69)
$$\begin{aligned} T_\star&= \frac{(1-b\zeta )^{1/3}z^{1/3}}{\sqrt{(}a)}\left( \frac{\text{ sign }_1\sqrt{C_{n_1}^2}B_2-\text{ sign }_2 \sqrt{C_{n_2}^2}B_1}{A_1B_2-A_2B_1}\right) , \end{aligned}$$
(70)
$$\begin{aligned} q_\star&= \frac{(1-b\zeta )^{1/3}z^{1/3}}{\sqrt{(}a)}\left( \frac{\text{ sign }_2\sqrt{C_{n_2}^2}A_1-\text{ sign }_1 \sqrt{C_{n_1}^2}A_2}{A_1B_2-A_2B_1}\right) . \end{aligned}$$
(71)

We expand Eqs. 68 and 69 as

$$\begin{aligned} d\zeta&= \left( \frac{\partial \zeta }{\partial z}\right) _{68}dz+\left( \frac{\partial \zeta }{\partial T_\star }\right) _{68}dT_\star +\left( \frac{\partial \zeta }{\partial q_\star }\right) _{68}dq_\star ,\end{aligned}$$
(72)
$$\begin{aligned} d\epsilon&= \left( \frac{\partial \epsilon }{\partial u_\star }\right) _{69}du_\star +\left( \frac{\partial \epsilon }{\partial z}\right) _{69}dz+\left( \frac{\partial \epsilon }{\partial \zeta }\right) _{69}d\zeta . \end{aligned}$$
(73)

Combining these, we obtain

$$\begin{aligned} d\epsilon&= \left[ \left( \frac{\partial \epsilon }{\partial u_\star }\right) _{69}+\left( \frac{\partial \epsilon }{\partial \zeta }\right) _{69}\left( \frac{\partial \zeta }{\partial u_\star }\right) _{68}\right] du_\star \nonumber \\&+\left[ \left( \frac{\partial \epsilon }{\partial z}\right) _{69}+\left( \frac{\partial \epsilon }{\partial \zeta }\right) _{69}\left( \frac{\partial \zeta }{\partial z}\right) _{68}\right] dz \nonumber \\&+\left( \frac{\partial \epsilon }{\partial \zeta }\right) _{69}\left( \frac{\partial \zeta }{\partial T_\star }\right) _{68}dT_\star \nonumber \\&+\left( \frac{\partial \epsilon }{\partial \zeta }\right) _{69}\left( \frac{\partial \zeta }{\partial q_\star }\right) _{68}dT_\star , \end{aligned}$$
(74)
$$\begin{aligned} \frac{d\epsilon }{\epsilon }&= \frac{u_\star }{\epsilon } \frac{du_\star }{u_\star } \left[ \left( \frac{\partial \epsilon }{\partial u_\star }\right) _{69}+\left( \frac{\partial \epsilon }{\partial \zeta }\right) _{69}\left( \frac{\partial \zeta }{\partial u_\star }\right) _{68}\right] \nonumber \\&+\frac{z}{\epsilon }\frac{dz}{z}\left[ \left( \frac{\partial \epsilon }{\partial z}\right) _{69}+\left( \frac{\partial \epsilon }{\partial \zeta }\right) _{69}\left( \frac{\partial \zeta }{\partial z}\right) _{68}\right] \nonumber \\&+\frac{T_\star }{\epsilon }\frac{dT_\star }{T_\star }\left( \frac{\partial \epsilon }{\partial \zeta }\right) _{69}\left( \frac{\partial \zeta }{\partial T_\star }\right) _{68} \nonumber \\&+\frac{q_\star }{\epsilon }\frac{dq_\star }{q_\star }\left( \frac{\partial \epsilon }{\partial \zeta }\right) _{69}\left( \frac{\partial \zeta }{\partial q_\star }\right) _{68} , \end{aligned}$$
(75)

where the local derivatives are given by

$$\begin{aligned} \left( \frac{\partial \epsilon }{\partial u_\star }\right) _{69}&= \frac{3\epsilon }{u_\star },\end{aligned}$$
(76)
$$\begin{aligned} \left( \frac{\partial \zeta }{\partial u_\star }\right) _{68}&= \frac{-2\zeta }{u_\star },\end{aligned}$$
(77)
$$\begin{aligned} \left( \frac{\partial \epsilon }{\partial \zeta }\right) _{69}&= \frac{\epsilon }{\phi (\zeta )}\frac{\partial \phi }{\partial \zeta }(\zeta ), \end{aligned}$$
(78)
$$\begin{aligned} \left( \frac{\partial \epsilon }{\partial z}\right) _{69}&= -\frac{\epsilon }{z}, \end{aligned}$$
(79)
$$\begin{aligned} \left( \frac{\partial \zeta }{\partial z}\right) _{68}&= \frac{\zeta }{z} ,\end{aligned}$$
(80)
$$\begin{aligned} \zeta _T&\equiv \frac{zg\kappa }{u_\star ^2 T}T_\star ,\end{aligned}$$
(81)
$$\begin{aligned} \zeta _q&\equiv \frac{zg\kappa }{u_\star ^2 T}\left( \frac{0.61T}{\rho +0.61q}\right) q_\star ,\end{aligned}$$
(82)
$$\begin{aligned} \zeta&= \zeta _T+\zeta _q ,\end{aligned}$$
(83)
$$\begin{aligned}&\left( \frac{\partial \zeta }{\partial T_\star }\right) _{68}=\frac{\zeta _T}{T_\star },\end{aligned}$$
(84)
$$\begin{aligned}&\left( \frac{\partial \zeta }{\partial q_\star }\right) _{68}=\frac{\zeta _q}{q_\star }. \end{aligned}$$
(85)

Thus the expansion becomes

$$\begin{aligned} \frac{d\epsilon }{\epsilon }&= \frac{du_\star }{u_\star } \left( 3-\frac{2\zeta }{\phi (\zeta )}\frac{\partial \phi }{\partial \zeta }(\zeta )\right) \nonumber \\&+\frac{dz}{z}\left( -1+\frac{\zeta }{\phi (\zeta )}\frac{\partial \phi }{\partial \zeta }(\zeta )\right) \nonumber \\&+\frac{dT_\star }{T_\star }\frac{\zeta _T}{\phi (\zeta )}\frac{\partial \phi }{\partial \zeta }(\zeta ) \nonumber \\&+\frac{dq_\star }{q_\star }\frac{\zeta _q}{\phi (\zeta )}\frac{\partial \phi }{\partial \zeta }(\zeta ), \end{aligned}$$
(86)

where \(dT_\star \) and \(dq_\star \) have been expanded in Andreas (1989) as

$$\begin{aligned} \frac{dT_\star }{T_\star }&= S_z \frac{dz}{z}+S_{u_\star }\frac{du_\star }{u_\star }+S_{TC_{n_1}} \frac{dC_{n_1}}{C_{n_1}}+S_{TC_{n_2}}\frac{dC_{n_2}}{C_{n_2}}, \end{aligned}$$
(87)
$$\begin{aligned} \frac{dq_\star }{q_\star }&= S_z \frac{dz}{z}+S_{u_\star }\frac{du_\star }{u_\star }+S_{QC_{n_1}} \frac{dC_{n_1}}{C_{n_1}}+S_{QC_{n_2}}\frac{dC_{n_2}}{C_{n_2}}. \end{aligned}$$
(88)

Thus we have

$$\begin{aligned} \frac{d_\epsilon }{\epsilon }&= \frac{du_\star }{u_\star } \left( 3+\frac{\zeta }{\phi (\zeta )}\frac{\partial \phi }{\partial \zeta }(\zeta )(S_{u_\star }-2)\right) \nonumber \\&+\frac{dz}{z}\left( -1+\frac{\zeta }{\phi (\zeta )}\frac{\partial \phi }{\partial \zeta }(\zeta )(S_z+1)\right) +(\ldots )\frac{dC_{n_1}}{C_{n_1}} +(\ldots )\frac{dC_{n_2}}{C_{n_2}} , \end{aligned}$$
(89)

which gives us

$$\begin{aligned} S_{u_\star ,\epsilon }&= \frac{(1/3)}{\left( 1+\frac{1}{3} \frac{\zeta }{\phi (\zeta )}\frac{\partial \phi }{\partial \zeta }(\zeta )(S_{u_\star }-2)\right) },\end{aligned}$$
(90)
$$\begin{aligned} S_{u_\star ,z}&= \frac{\frac{1}{3}\left( 1-\frac{\zeta }{\phi (\zeta )}\frac{\partial \phi }{\partial \zeta }(\zeta )(S_z+1)\right) }{\left( 1+\frac{1}{3}\frac{\zeta }{\phi (\zeta )} \frac{\partial \phi }{\partial \zeta }(\zeta )(S_{u_\star }-2)\right) } , \end{aligned}$$
(91)

where the terms \((S_{u_\star }-2)\) and \((S_z+1)\) are \((S_{u_\star }-4)\) and \((S_z+2)\) in Andreas (1992). Equations 90 and 91 reduce to Eqs. 44 and 46. Also from Andreas (1989) we have

$$\begin{aligned} S_{u_\star }=\frac{2b\zeta }{3-2b\zeta }, \end{aligned}$$
(92)
$$\begin{aligned} S_z=\frac{1-2b\zeta }{3-2b\zeta }, \end{aligned}$$
(93)

where \(S_{u_\star }\) would be denoted here as \(S_{T_\star ,u_\star }\) and \(S_z\) would be written here as \(S_{T_\star ,z}\) for a large-aperture scintillometer strategy not involving the derivation of \(u_\star \) from Eq. 69. Equations 92 and 93 can be derived directly from the expressions in Andreas (1989) or they can be derived using the methodology outlined in this study. An alternative to using the results from Andreas (1989) in Eqs. 87 and 88 is to perform the total-differential expansion in Andreas (1992) from all the equations including an expansion of Eqs. 70 and 71, although the results are the same as here.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gruber, M., Fochesatto, G.J. A New Sensitivity Analysis and Solution Method for Scintillometer Measurements of Area-Averaged Turbulent Fluxes. Boundary-Layer Meteorol 149, 65–83 (2013). https://doi.org/10.1007/s10546-013-9835-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-013-9835-9

Keywords

Navigation