Skip to main content
Log in

Spatially-Averaged Temperature Structure Parameter Over a Heterogeneous Surface Measured by an Unmanned Aerial Vehicle

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The structure parameter of temperature, \({C_{T}^{2}}\) , in the lower convective boundary layer was measured using the unmanned mini aerial vehicle M2AV. The measurements were carried out on two hot summer days in July 2010 over a heterogeneous land surface around the boundary-layer field site of the Lindenberg Meteorological Observatory—Richard-Aßmann-Observatory of the German Meteorological Service. The spatial series of \({C_{T}^{2}}\) showed considerable variability along the flight path that was caused by both temporal variations and surface heterogeneity. Comparison of the aircraft data with \({C_{T}^{2}}\) values derived from tower-based in situ turbulence measurements showed good agreement with respect to the diurnal variability. The decrease of \({C_{T}^{2}}\) with height as predicted by free-convection scaling could be confirmed for the morning and afternoon flights while the flights around noon suggest a different behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bange J, Spieß T, van den Kroonenberg AC (2007) Characteristics of the early-morning shallow convective boundary layer from helipod flights during STINHO-2. Theor Appl Climatol 90(1–2): 113–126

    Article  Google Scholar 

  • Banta R, Newsom R, Lundquist J, Pichugina Y, Coulter R, Mahrt L (2002) Nocturnal low-level jet characteristics over Kansas during CASES-99. Boundary-Layer Meteorol 105: 221–252

    Article  Google Scholar 

  • Beyrich F, Mengelkamp HT (2006) Evaporation over a heterogeneous land surface: EVA_GRIPS and the LITFASS-2003 experiment—an overview. Boundary-Layer Meteorol 121: 1–28

    Article  Google Scholar 

  • Beyrich F, de Bruin HAR, Meijninger WML, Schipper JW, Lohse H (2002) Results from one-year continuous operation of a large aperture scintillometer over a heterogeneous land surface. Boundary-Layer Meteorol 105: 85–97

    Article  Google Scholar 

  • Braam M (2010) Determination of the surface sensible heat flux from the structure parameter of temperature at 60 m height during day-time. KNMI technical report TR-303, 39 pp

  • Bromba MUA, Zlegler H (1981) Application hints for Savitzky-Golay digital smoothing filters. Anal Chem 53: 1583–1586

    Article  Google Scholar 

  • Coulman CE (1973) Vertical profiles of small-scale temperature structure in the atmosphere. Boundary-Layer Meteorol 4: 169–177

    Article  Google Scholar 

  • Cuijpers JWM, Kohsiek W (1989) Vertical profiles of the structure parameter of temperature in the stable, nocturnal boundary layer. Boundary-Layer Meteorol 47: 111–129

    Article  Google Scholar 

  • Cuxart J (2008) Nocturnal basin low-level jets: an integrated study. Acta Geophys 56(1): 100–113

    Article  Google Scholar 

  • Cuxart J, Jiménez MA (2007) Mixing processes in a nocturnal low-level jet: an LES study. J Atmos Sci 64: 1666–1679

    Article  Google Scholar 

  • de Bruin HAR, van den Hurk BJJM, Kohsiek W (1995) The scintillation method tested over a dry vineyard area. Boundary-Layer Meteorol 76: 25–40

    Article  Google Scholar 

  • Fairall CW (1987) A top-down and bottom-up diffusion model of C 2T and C 2q in the entraining convective boundary layer. J Atmos Sci 44: 1009–1017

    Article  Google Scholar 

  • Fairall CW, Markson R, Schacher GE, Davidson KL (1980) An aircraft study of turbulence dissipation rate and temperature structure function in the unstable marine atmospheric boundary layer. Boundary-Layer Meteorol 19: 453–469

    Article  Google Scholar 

  • Frisch AS, Clifford SF (1975) A note on the behaviour of the temperature structure parameter in a convective layer capped by a marine inversion. J Appl Meteorol 14: 415–419

    Article  Google Scholar 

  • Görsdorf U, Adedokoun JA, Engelbart DAM (2004) Low-level jet climatology using combined sodar and wind profiler measurements. In: Proceedings of the 12th international symposium on acoustic remote sensing, Cambridge, UK

  • Hoedjes JCB, Chehbouni A, Ezzahar J, Escadafal R, de Bruin HAR (2007) Comparison of large aperture scintillometer and eddy covariance measurements: can thermal infrared data be used to capture footprint-induced differences?.   J Hydrometeorol 8: 144–159

    Article  Google Scholar 

  • Holland GJ, Webster PJ, Curry JA, Tyrell G, Gauntlett D, Brett G, Becker J, Hoag R, Vaglienti W (2001) The Aerosonde robotic aircraft: a new paradigm for environmental observations. Bull Am Meteorol Soc 82(5): 889–901

    Article  Google Scholar 

  • Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows—their structure and measurement. Oxford University Press, New York, p 289 pp

    Google Scholar 

  • Kaimal JC, Gaynor JE (1991) Another look to sonic thermometry. Boundary-Layer Meteorol 56: 401–410

    Article  Google Scholar 

  • Kohsiek W (1982) Measuring \({C_T^2}\), \({C_Q^2}\) , and C TQ in the unstable surface layer, and relations to the vertical fluxes of heat and moisture. Boundary-Layer Meteorol 24: 89–107

    Article  Google Scholar 

  • Kolmogorov A (1941) Local structure of turbulence in an incompressible fluid for very large Reynolds numbers. Dokl Akad Nauk SSSR 30: 299–303

    Google Scholar 

  • Lenschow DH, Stankov BB (1986) Length scales in the convective boundary layer. J Atmos Sci 43: 1198–1209

    Article  Google Scholar 

  • Lenschow DH, Mann J, Kristensen L (1994) How long is long enough when measuring fluxes and other turbulence statistics. J Atmos Ocean Technol 11: 661–673

    Article  Google Scholar 

  • Lumley L, Panofsky H (1964) The structure of atmospheric turbulence. Wiley, New York, 239 pp

    Google Scholar 

  • Ma S, Chen H, Wang G, Pan Y, Li Q (2004) A miniature robotic plane meteorological sounding system. Adv Atmos Sci 21: 890–896

    Article  Google Scholar 

  • Martin S, Bange J, Beyrich F (2011) Profiling the lower troposphere using the research UAV ‘M2AV Carolo’. Atmos Meas Tech 4: 705–716

    Article  Google Scholar 

  • Mayer S, Sandvik A, Jonassen MO, Reuder J (2010) Atmospheric profiling with the UAS SUMO: a new perspective for the evaluation of fine-scale atmospheric models. Meteorol Atmos Phys 12. doi:10.1007/s00703-010-0063-2

  • Meijninger WML, de Bruin HAR (2000) The sensible heat fluxes over irrigated areas in western Turkey determined with a large-aperture scintillometer. J Hydrol 229: 42–49

    Article  Google Scholar 

  • Meijninger WML, Beyrich F, Lüdi A, Kohsiek W, de Bruin HAR (2006) Scintillometer-based turbulent fluxes of sensible and latent heat over a heterogeneous land surface—a contribution to LITFASS-2003. Boundary-Layer Meteorol 121: 89–110

    Article  Google Scholar 

  • Nieveen JP, Green AE (1999) Measuring sensible heat flux density over pasture using the \({C_{T}^{2}}\) -profile method. Boundary-Layer Meteorol 91: 23–35

    Article  Google Scholar 

  • Reuder J, Brisset P, Jonassen M, Müller M, Mayer S (2009) The small unmanned meteorological observer SUMO: a new tool for atmospheric boundary layer research. Meteorol Z 18(2): 141–147

    Article  Google Scholar 

  • Rotta JC (1972) Turbulente Strömungen. Eine Einführung in die Theorie und ihre Anwendung. Teubner, Stuttgart

    Google Scholar 

  • Soddell JR, McGuffie K, Holland GJ (2004) Intercomparison of atmospheric soundings from the Aeroson and radiosonde. J Appl Meteorol 43: 1260–1269

    Article  Google Scholar 

  • Sorbjan Z (2005) Statistics of scalar fields in the atmospheric boundary layer based on large-eddy simulations. Part I: Free convection. Boundary-Layer Meteorol 116: 467–486

    Article  Google Scholar 

  • Spieß T, Bange J, Buschmann M, Vörsmann P (2007) First application of the meteorological mini-UAV ’M2 AV’. Meteorol Z N F 16(2): 159–169

    Article  Google Scholar 

  • Thorpe AJ, Guymer TH (1977) The nocturnal jet. Q J R Meteorol Soc 103: 633–653

    Article  Google Scholar 

  • van den Kroonenberg AC (2009) Airborne measurement of small-scale turbulence with special regard to the polar boundary layer. No. 2009-11 in ZLR-Forschungsbericht, Sierke Verlag, Göttingen, Germany

  • van den Kroonenberg AC, Spieß T, Buschmann M, Martin T, Anderson PS, Beyrich F, Bange J (2007) Boundary layer measurements with the autonomous mini-UAV M2AV. In: Deutsch - Österreichisch - Schweizerische Meteorologen - Tagung, Deutsche Meteorologische Gesellschaft, Hamburg, Germany, p 10

  • van den Kroonenberg AC, Martin T, Buschmann M, Bange J, Vörsmann P (2008) Measuring the wind vector using the autonomous mini aerial vehicle M2AV. J Atmos Ocean Technol 25(11): 1969–1982

    Article  Google Scholar 

  • Wyngaard JC, LeMone MA (1980) Behavior of the refractive index structure parameter in the entraining convective boundary layer. J Atmos Sci 37: 1573–1585

    Article  Google Scholar 

  • Wyngaard JC, Izumi Y, Collins SA (1971) Behavior of the refractive-index-structure parameter near the ground. J Opt Soc Am 61: 1646–1650

    Article  Google Scholar 

  • Wyngaard JC, Pennell WT, Lenschow DH, LeMone MA (1978) The temperature-humidity covariance budget in the convectice boundary layer. J Atmos Sci 35: 47–58

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. C. van den Kroonenberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van den Kroonenberg, A.C., Martin, S., Beyrich, F. et al. Spatially-Averaged Temperature Structure Parameter Over a Heterogeneous Surface Measured by an Unmanned Aerial Vehicle. Boundary-Layer Meteorol 142, 55–77 (2012). https://doi.org/10.1007/s10546-011-9662-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-011-9662-9

Keywords

Navigation