Skip to main content
Log in

Statistics of Scalar Fields in the Atmospheric Boundary Layer Based on Large-eddy Simulations. Part 1: Free Convection

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Convection in a quasi-steady, cloud-free, shear-free atmospheric boundary layer is investigated based on a large-eddy simulation model. The performed tests indicate that the characteristic (peak) values of statistical moments at the top of the mixed layer are proportional to the interfacial scales (from gradients of scalars in the interfacial layer). Based on this finding a parameterization is proposed for profiles of scalar variances. The parameterization employs two, semi-empirical similarity functions F m (z/zi) andFi(z/zi), multiplied by a combination of the mixed-layer scales and the interfacial scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Conseminus, R. and Fedorovich E.: 2004, ‘Numericals Models of Entertainment into Sheared Convective Boundary Layers Evaluvated Through Large-Eddy Simulations’. in 16th Symp. on Bound. Layers and Turbulence, Portland, Maine, on a CD by American Meteorological Society

  • J. W. Deardorff (1970) ArticleTitle‘Convective Velocity and Temperature Scales for the Unstable Planetary Boundary Layer and for Raleigh Convection’ J. Atmos. Sci. 27 1211–1213 Occurrence Handle10.1175/1520-0469(1970)027<1211:CVATSF>2.0.CO;2

    Article  Google Scholar 

  • Edwards, J. M., Beare, B., and Lapwort, A.: 2004 ‘Modelling of Transition Boundary Layers’, in 16th Symp. on Bound. Layers and Turbulence Portland, Maine, on a CD by American Meteorological Society.

  • M. F. Hibbert (1996) ArticleTitle‘Comments on Toward Evaluation of Heat Fluxes in the Convective Boundary Layer’ J. Appl. Meteorol. 35 1370–1373 Occurrence Handle10.1175/1520-0450(1996)035<1370:COEOHF>2.0.CO;2

    Article  Google Scholar 

  • D. K. Lilly (1968) ArticleTitle‘Models of Cloud-Topped Mixed Layers Under Strong Inversion’ Quart. J. Roy. Meteorol. Soc. 94 292–309

    Google Scholar 

  • D. K. Lilly (2002) ArticleTitle‘Entrainment into Mixed Layers. Part I: Sharp-edged and Smoothed Tops’ J. Atmos. Sci. 59 3340–3361 Occurrence Handle10.1175/1520-0469(2002)059<3340:EIMLPI>2.0.CO;2

    Article  Google Scholar 

  • MacPhearson, L. I. and Betts, A.: 1995, ‘Aircraft Encounters with Strong Coherent Vorticies Over the Boreal Forest’. Preprints, in 11th Symp. on Bound. Layers and Turbulence Charlotte, N.Carolina, American Meteorological Society, 424–427

  • G. L. Mellor T. Yamada (1974) ArticleTitle‘A Hierarchy of Turbulence Closure Models for Planetary Boundary Layers’ J. Atmos. Sci. 31 1791–1806 Occurrence Handle10.1175/1520-0469(1974)031<1791:AHOTCM>2.0.CO;2

    Article  Google Scholar 

  • Z. Sorbjan (1991) ArticleTitle‘Evaluation of Local Similarity Functions in the Convective Boundary Layer’ J. Appl. Meteorol. 30 1565–1583 Occurrence Handle10.1175/1520-0450(1991)030<1565:EOLSFI>2.0.CO;2

    Article  Google Scholar 

  • Z. Sorbjan (1995) ArticleTitle‘Toward Evaluation of Heat Fluxes in the Convective Boundary Layer’ J. Appl. Meteorol. 34 1092–1098 Occurrence Handle10.1175/1520-0450(1995)034<1092:TEOHFI>2.0.CO;2

    Article  Google Scholar 

  • Z. Sorbjan (1996a) ArticleTitle‘Numerical Study of Penetrative and ‘Solid Lid’ Non-penetrative Convective Boundary Layers’ J. Atmos. Sci. 53 101–112 Occurrence Handle10.1175/1520-0469(1996)053<0101:NSOPAL>2.0.CO;2

    Article  Google Scholar 

  • Z. Sorbjan (1996b) ArticleTitle‘Effects Caused by Varying Strength of the Capping Inversion Based on a Large-Eddy Simulation Model of the Shear-Free Convective Boundary Layer’ J. Atmos. Sci. 53 2015–2024 Occurrence Handle10.1175/1520-0469(1996)053<2015:ECBVTS>2.0.CO;2

    Article  Google Scholar 

  • Z. Sorbjan (1996c) ArticleTitle‘Reply’ J. Appl. Meteorol. 35 1374–1377 Occurrence Handle10.1175/1520-0450(1996)035<1374:R>2.0.CO;2

    Article  Google Scholar 

  • Z. Sorbjan (1999) ArticleTitle‘Similarity of Scalar Fields in the Convective Boundary Layer’ J. Atmos. Sci. 56 2212–2221 Occurrence Handle10.1175/1520-0469(1999)056<2212:SOSFIT>2.0.CO;2

    Article  Google Scholar 

  • Z. Sorbjan (2001) ArticleTitle‘An Evaluation of Local Similarity on the Top of the Mixed Layer Based on Large-Eddy simulations’ Boundary-Layer Meteorol. 101 183–207 Occurrence Handle10.1023/A:1019260632125

    Article  Google Scholar 

  • Z. Sorbjan (2004) ArticleTitle‘Large-Eddy Simulations of the Baroclinic Mixed Layer’ Boundary-Layer Meteorol. 112 57–80 Occurrence Handle10.1023/B:BOUN.0000020161.99887.b3

    Article  Google Scholar 

  • Sorbjan, Z.: 2005: ‘Statistics of Scalar Fields in the Atmospheric Boundary Layer Based on Large-Eddy Simulations Part II: Forced Convection’. Accepted Boundary-Layer Meteorol

  • Spiess, T., Zittel, P., and Bange, J.: 2004, ‘Analysis of Flat Convection During the Morning Boundary-layer Transition Using Airborne Measurements’, in 16th Symp. on Bound. Layers and Turbulence, Portland, Maine, on a CD by American Meteorological Society.

  • P. P. Sullivan C.-H. Moeng B. Stevens D. H., Lenschow S. D. Mayor (1998) ArticleTitle‘Structure of the entrainment Zone Capping the Convective Atmospheric Boundary Layer’ J. Atmos. Sci. 55 3042–3064 Occurrence Handle10.1175/1520-0469(1998)055<3042:SOTEZC>2.0.CO;2

    Article  Google Scholar 

  • J. C. Wyngaard R. Brost (1984) ArticleTitle‘Top-Down and Bottom-up Diffusion of a Scalar in the Convective Boundary Layer’ J. Atmos. Sci. 41 102–112 Occurrence Handle10.1175/1520-0469(1984)041<0102:TDABUD>2.0.CO;2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zbigniew Sorbjan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sorbjan, Z. Statistics of Scalar Fields in the Atmospheric Boundary Layer Based on Large-eddy Simulations. Part 1: Free Convection. Boundary-Layer Meteorol 116, 467–486 (2005). https://doi.org/10.1007/s10546-005-0907-3

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-005-0907-3

Keywords

Navigation