Skip to main content
Log in

Large-Eddy Simulation of Stably-Stratified Flow Over a Steep Hill

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Large-eddy simulation (LES) is used to simulate stably-stratified turbulent boundary-layer flow over a steep two-dimensional hill. To parametrise the subgrid-scale (SGS) fluxes of heat and momentum, three different types of SGS models are tested: (a) the Smagorinsky model, (b) the Lagrangian dynamic model, and (c) the scale-dependent Lagrangian dynamic model (Stoll and Porté-Agel, Water Resour Res 2006, doi:10.1029/2005WR003989). Simulation results obtained with the different models are compared with data from wind-tunnel experiments conducted at the Environmental Flow Research Laboratory (EnFlo), University of Surrey, U.K. (Ross et al., Boundary-Layer Meteorol 113:427–459, 2004). It is found that, in this stably-stratified boundary-layer flow simulation, the scale-dependent Lagrangian dynamic model is able to account for the scale dependence of the eddy-viscosity and eddy-diffusivity model coefficients associated with flow anisotropy in flow regions with large mean shear and/or strong flow stratification. As a result, simulations using this tuning-free model lead to turbulence statistics that are more realistic than those obtained with the other two models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albertson JD, Parlange MB (1999) Surface length scales in shear stress: implications for land–atmosphere interactions over complex terrain. Water Resour Res 35: 2121–2132

    Article  Google Scholar 

  • Bardina J, Ferziger JH, Reynolds WC (1983) Improved turbulence models based on large eddy simulation of homogeneous, incompressible, turbulent flows. PhD thesis; Rep. TF-19. Thermosciences Division, Department of Mechanical Engineering, Stanford University

  • Beare RJ et al (2006) An intercomparison of large-eddy simulations of the stable boundary layer. Boundary-Layer Meteorol 118: 247–272. doi:10.1007/s10546-004-2820-6

    Article  Google Scholar 

  • Bou-Zeid E, Meneveau C, Parlange MB (2005) A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows. Phys Fluids 17: 025105

    Article  Google Scholar 

  • Bou-Zeid E, Vercauteren N, Parlange MB, Meneveau C (2008) Scale dependence of subgrid-scale model coefficients: an a priori study. Phys Fluids 20: 115106

    Article  Google Scholar 

  • Brown AR, Hobson JM, Wood N (2001) Large-eddy simulation of neutral turbulent flow over rough sinusoidal ridges. Boundary-Layer Meteorol 98: 411–441

    Article  Google Scholar 

  • Calhoun RJ, Street RL (2001) Turbulent flow over a wavy surface: neutral case. J Geophys Res 106: 9277–9293

    Article  Google Scholar 

  • Calhoun RJ, Street RL, Koseff JR (2001) Turbulent flow over a wavy surface: stratified case. J Geophys Res 106: 9295–9310

    Article  Google Scholar 

  • Canuto VM, Cheng Y (1997) Determination of the Smagorinsky-Lilly constant C s . Phys Fluids 9: 1368–1378

    Article  Google Scholar 

  • Clark T (1977) A small-scale dynamic model using a terrain-following coordinate transformation. J Comput Phys 24: 186–215

    Article  Google Scholar 

  • Deardorff JW (1970) A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J Fluid Mech 41: 453–480

    Article  Google Scholar 

  • Germano M, Piomelli U, Moin P, Cabot W (1991) A dynamic subgrid-scale eddy viscosity model. Phys Fluids A 3(7): 1760–1765

    Article  Google Scholar 

  • Gong W, Taylor PA, Dörnbrack A (1996) Turbulent boundary-layer flow over fixed aerodynamically rough two-dimensional sinusoidal waves. J Fluid Mech 312: 1–37

    Article  Google Scholar 

  • Henn DS, Sykes RI (1999) Large-eddy simulation of flow over wavy surfaces. J Fluid Mech 383: 75–112

    Article  Google Scholar 

  • Horiuti K (1993) A proper velocity scale for modelling subgridscale eddy viscosities in large-eddy simulation. Phys Fluids A 5(1): 146–157

    Article  Google Scholar 

  • Iizuka S, Kondo H (2004) Performance of various sub-grid scale models in large-eddy simulation of turbulent flow over complex terrain. Atmos Environ 38: 7083–7091

    Article  Google Scholar 

  • Kang HS, Meneveau C (2002) Universality of large eddy simulation model parameters across a turbulent wake behind a heated cylinder. J Turbul. doi:10.1088/1468-5248/3/1/032

  • Kleissl J, Meneveau C, Parlange MB (2003) On the magnitude and variability of subgrid-scale eddy-diffusion coefficients in the atmospheric surface layer. J Atmos Sci 60: 2372–2388

    Article  Google Scholar 

  • Kleissl J, Kumar V, Meneveau C, Parlange MB (2006) Numerical study of dynamic Smagorinsky models in large-eddy simulation of the atmospheric boundary layer: validation in stable and unstable conditions. Water Resour Res. doi:10.1029/2005WR004685

  • Lilly DK (1967) The representation of small-scale turbulence in numerical simulation experiments. In: Proceedings of IBM scientific computing symposium on environmental sciences, White Plains, NY, IBM Data Processing Division, p 195

  • Lilly DK (1992) A proposed modification of the Germano subgrid-scale closure method. Phys Fluids A 4(3): 633–635

    Article  Google Scholar 

  • Mason PJ, Derbyshire SH (1990) Large-eddy simulation of the stably-stratified atmospheric boundary layer. Boundary-Layer Meteorol 53: 117–162

    Article  Google Scholar 

  • Mason PJ, Thomson DJ (1992) Stochastic backscatter in large-eddy simulations of boundary layers. J Fluid Mech 242: 51–78

    Article  Google Scholar 

  • Meneveau C, Lund T, Cabot W (1996) A Lagrangian dynamic subgrid-scale model of turbulence. J Fluid Mech 319: 353–385

    Article  Google Scholar 

  • Moin P, Kim J (1982) Numerical investigation of turbulent channel flow. J Fluid Mech 118: 341–377

    Article  Google Scholar 

  • Moin P, Squires K, Cabot W, Lee S (1991) A dynamic subgrid-scale model for compressible turbulence and scalar transport. Phys Fluids A 3(11): 2746–2757

    Article  Google Scholar 

  • Murakami S, Mochida A, Ooka R, Kato S, Iizuka S (1996) Numerical prediction of flow around a building with various turbulence models: comparison of k-ε EVM, ASM, DSM, and LES with wind tunnel tests. ASHRAE Trans 102: 741–753

    Google Scholar 

  • Piomelli U, Moin P, Ferziger JH (1988) Model consistency in large eddy simulation of turbulent channel flows. Phys Fluids 31: 1884–1891

    Article  Google Scholar 

  • Porté-Agel F (2004) A scale-dependent dynamic model for scalar transport in large-eddy simulations of the atmospheric boundary layer. Boundary-Layer Meteorol 112: 81–105

    Article  Google Scholar 

  • Porté-Agel F, Meneveau C, Parlange MB (2000) A scale-dependent dynamic model for large-eddy simulation: application to a neutral atmospheric boundary layer. J Fluid Mech 415: 261–284

    Article  Google Scholar 

  • Porté-Agel F, Pahlow M, Meneveau C, Parlange MB (2001a) Atmospheric stability effect on subgrid-scale physics for large-eddy simulation. Adv Water Res 24: 1085–1102

    Article  Google Scholar 

  • Porté-Agel F, Parlange MB, Meneveau C, Eichinger WE (2001b) A priori field study of the subgrid-scale heat fluxes and dissipation in the atmospheric surface layer. J Atmos Sci 58: 2673–2698

    Article  Google Scholar 

  • Ross AN, Arnold S, Vosper SB, Mobbs SD, Dixon N, Robins AG (2004) A comparison of wind tunnel experiments and numerical simulations of neutral and stratified flow over a hill. Boundary-Layer Meteorol 113: 427–459

    Article  Google Scholar 

  • Smagorinsky J (1963) General circulation experiments with the primitive equations: I. The basic experiment. Mon Weather Rev 91: 99–164

    Article  Google Scholar 

  • Stoll R, Porté-Agel F (2006) Dynamic subgrid-scale models for momentum and scalar fluxes in large-eddy simulation of neutrally stratified atmospheric boundary layers over heterogeneous terrain. Water Resour Res. doi:10.1029/2005WR003989

  • Stoll R, Porté-Agel F (2008) Large-eddy simulation of the stable atmospheric boundary layer using dynamic models with different averaging schemes. Boundary-Layer Meteorol 126: 1–28

    Article  Google Scholar 

  • Tseng YH, Meneveau C, Parlange MB (2006) Modeling flow around bluff bodies and predicting urban dispersion using large eddy simulation. Environ Sci Technol 40: 2653–2662

    Article  Google Scholar 

  • Wan F, Porté-Agel F, Stoll R (2007) Evaluation of dynamic subgrid-scale models in large-eddy simulations of neutral turbulent flow over a two-dimensional sinusoidal hill. Atmos Environ 41: 2719–2728

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Porté-Agel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wan, F., Porté-Agel, F. Large-Eddy Simulation of Stably-Stratified Flow Over a Steep Hill. Boundary-Layer Meteorol 138, 367–384 (2011). https://doi.org/10.1007/s10546-010-9562-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-010-9562-4

Keywords

Navigation