Skip to main content

Advertisement

Log in

Analysis of Model Results for the Turning of the Wind and Related Momentum Fluxes in the Stable Boundary Layer

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The turning of wind with height and the related cross-isobaric (ageostrophic) flow in the thermally stable stratified boundary layer is analysed from a variety of model results acquired in the first Global Energy and Water Cycle Experiment (GEWEX) Atmospheric Boundary Layer Study (GABLS1). From the governing equations in this particular simple case it becomes clear that the cross-isobaric flow is solely determined by the surface turbulent stress in the direction of the geostrophic wind for the quasi-steady state conditions under consideration. Most models indeed seem to approach this relationship but for very different absolute values. Because turbulence closures used in operational models typically tend to give too deep a boundary layer, the integrated total cross-isobaric mass flux is up to three times that given by research numerical models and large-eddy simulation. In addition, the angle between the surface and the geostrophic wind is typically too low, which has important implications for the representation of the larger-scale flow. It appears that some models provide inconsistent results for the surface angle and the momentum flux profile, and when the results from these models are removed from the analysis, the remaining ten models do show a unique relationship between the boundary-layer depth and the surface angle, consistent with the theory given. The present results also imply that it is beneficial to locate the first model level rather close to the surface for a proper representation of the turning of wind with height in the stable boundary layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrén A (1990) Evolution of a turbulence closure scheme suitable for air-pollution applications. J Appl Meteorol 29: 224–239. doi:10.1175/1520-0450(1990)029<0224:EOATCS>2.0.CO;2

    Article  Google Scholar 

  • Angevine WM, Tjernström M, Zagar M (2006) Modeling of the coastal boundary layer and pollutant transport in New England. J Appl Meteorol Climatol 45: 137–154. doi:10.1175/JAM2333.1

    Article  Google Scholar 

  • Basu S, Porté-Agel F (2006) Large-eddy simulation of stably stratified atmospheric boundary layer turbulence: a scale-dependent dynamic modeling approach. J Atmos Sci 63: 2074–2091. doi:10.1175/JAS3734.1

    Article  Google Scholar 

  • Beare RJ (2007) Boundary layer mechanisms in extratropical cyclones. Q J Roy Meteorol Soc 133: 503–515. doi:10.1002/qj.30

    Article  Google Scholar 

  • Beare RJ, MacVean MK, Holtslag AAM, Cuxart J, Esau I, Golaz J-C, Jimenez MA, Khairoutdinov M, Kosovic B, Lewellen D, Lund TS, Lundquist JK, McCabe A, Moene AF, Noh Y, Raasch S, Sullivan PP (2006) An intercomparison of large-eddy simulations of the stable boundary layer. Boundary-Layer Meteorol 118: 247–272. doi:10.1007/s10546-004-2820-6

    Article  Google Scholar 

  • Blackadar AK (1957) Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bull Am Meteorol Soc 38: 283–290

    Google Scholar 

  • Bosveld F, Beyrich F (2004) Classifying observations of stable boundary layers for model validation. In: Sixteenth symposium on boundary layers and turbulence, Portland, Maine, US, 9–13 August

  • Brown AR, Beare RJ, Edwards JM, Lock AP, Keogh SJ, Milton SF, Walters DN (2008) Upgrades to the bounadry-layer scheme in the MetOffice numerical weather prediction model. Boundary-Layer Meteorol 128: 117–132. doi:10.1007/s10546-008-9275-0

    Article  Google Scholar 

  • Caughey SJ, Wyngaard JC, Kaimal JC (1979) Turbulence in the evolving stable boundary layer. J Atmos Sci 36: 1041–1052

    Google Scholar 

  • Cuxart J, Holtslag AAM, Beare RJ, Bazile E, Beljaars A, Cheng A, Conangla L, Ek M, Freedman F, Hamdi R, Kerstein A, Kitagawa H, Lenderink G, Lewellen D, Mailhot J, Mauritsen T, Perov V, Schayes G, Steeneveld G-J, Svensson G, Taylor P, Weng W, Wunsch S, Xu K-M (2006) Single-column model intercomparison for a stably stratified atmospheric boundary layer. Boundary-Layer Meteorol 118: 273–303. doi:10.1007/s10546-005-3780-1

    Article  Google Scholar 

  • Ekman VW (1905) On the influence of the earth’s rotation on ocean-currents. Arkiv Matem, Astr Fysik Stockh 2(11)

  • Grisogono B, Oerlemans J (2001) Katabatic flow: Analytic solution for gradually varying eddy diffusivities. J Atmos Sci 58: 3349–3354. doi:10.1175/1520-0469(2001)058<3349:KFASFG>2.0.CO;2

    Article  Google Scholar 

  • Holton JR (2004) An introduction to dynamic meteorology, 4th edn. Elsevier Academic Press, Amsterdam, p 535

    Google Scholar 

  • Holtslag AAM (2003) GABLS initiates intercomparison for stable boundary layers. GEWEX News 13: 7–8

    Google Scholar 

  • Holtslag AAM (2006) GEWEX Atmospheric Boundary-Layer Study (GABLS) on stable boundary layers. Boundary-Layer Meteorol 118: 243–246. doi:10.1007/s10546-005-9008-6

    Article  Google Scholar 

  • Holtslag AAM, Nieuwstadt FTM (1986) Scaling the atmospheric boundary layer. Boundary-Layer Meteorol 36: 201–209. doi:10.1007/BF00117468

    Article  Google Scholar 

  • Kosovic B, Curry JA (2000) A large eddy simulation study of a quasi-steady, stably stratified atmospheric boundary layer. J Atmos Sci 57: 1052–1068. doi:10.1175/1520-0469(2000)057<1052:ALESSO>2.0.CO;2

    Article  Google Scholar 

  • Lundquist JK (2003) Intermittent and elliptical inertial oscillations in the atmospheric boundary layer. J Atmos Sci 60: 2661–2673. doi:10.1175/1520-0469(2003)060<2661:IAEIOI>2.0.CO;2

    Article  Google Scholar 

  • Nieuwstadt FTM (1984) The turbulent structure of the stable boundary layer. J Atmos Sci 41: 2202–2216. doi:10.1175/1520-0469(1984)041<2202:TTSOTS>2.0.CO;2

    Article  Google Scholar 

  • Nieuwstadt FTM (1985) A model for the stationary, stable boundary layer. In: Turbulence and diffusion in stable environments. Hunt JCR (ed), Clarendon Press, Oxford, pp 149–179

  • Parmhed O, Kos I, Grisogono B (2005) An improved Ekman layer approximation for smooth eddy diffusivity profiles. Boundary-Layer Meteorol 115: 399–407. doi:10.1007/s10546-004-5940-0

    Article  Google Scholar 

  • Stull R (1988) An introduction to boundary layer meteorology. Kluwer Academic Publishers, Dordrecht, p 670

    Google Scholar 

  • Tan Z-M (2001) An approximate analytical solution for the baroclinic and variable eddy diffusivity semi-geostrophic Ekman boundary layer. Boundary-Layer Meteorol 98: 361–385. doi:10.1023/A:1018708726112

    Article  Google Scholar 

  • van Ulden AP, Holtslag AAM (1985) Estimation of atmospheric boundary layer parameters for diffusion applications. J Appl Meteorol 24: 1196–1207. doi:10.1175/1520-0450(1985)024<1196:EOABLP>2.0.CO;2

    Article  Google Scholar 

  • Walcek CJ (2002) Effects of wind shear on pollution dispersion. Atmos Environ 36: 511–517. doi:10.1016/S1352-2310(01)00383-1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunilla Svensson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Svensson, G., Holtslag, A.A.M. Analysis of Model Results for the Turning of the Wind and Related Momentum Fluxes in the Stable Boundary Layer. Boundary-Layer Meteorol 132, 261–277 (2009). https://doi.org/10.1007/s10546-009-9395-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-009-9395-1

Keywords

Navigation