Skip to main content

Advertisement

Log in

The Budget of Turbulent Kinetic Energy in the Urban Roughness Sublayer

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Full-scale observations from two urban sites in Basel, Switzerland were analysed to identify the magnitude of different processes that create, relocate, and dissipate turbulent kinetic energy (TKE) in the urban atmosphere. Two towers equipped with a profile of six ultrasonic anemometers each sampled the flow in the urban roughness sublayer, i.e. from street canyon base up to roughly 2.5 times the mean building height. This observational study suggests a conceptual division of the urban roughness sublayer into three layers: (1) the layer above the highest roofs, where local buoyancy production and local shear production of TKE are counterbalanced by local viscous dissipation rate and scaled turbulence statistics are close to to surface-layer values; (2) the layer around mean building height with a distinct inflexional mean wind profile, a strong shear and wake production of TKE, a more efficient turbulent exchange of momentum, and a notable export of TKE by transport processes; (3) the lower street canyon with imported TKE by transport processes and negligible local production. Averaged integral velocity variances vary significantly with height in the urban roughness sublayer and reflect the driving processes that create or relocate TKE at a particular height. The observed profiles of the terms of the TKE budget and the velocity variances show many similarities to observations within and above vegetation canopies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amiro BD (1990) Drag coefficients and turbulence spectra within three boreal forest canopies. Boundary-Layer Meteorol 52: 227–246

    Article  Google Scholar 

  • Belcher SE (2005) Mixing and transport in urban areas. Philos Trans R Soc A 363: 2947–2968

    Article  Google Scholar 

  • Britter RE, Hanna SE (2003) Flow and dispersion in urban areas. Annu Rev Fluid Mech 35: 469–496

    Article  Google Scholar 

  • Brunet Y, Finnigan JJ, Raupach MR (1994) Wind-tunnel study of air-flow in waving wheat—single-point velocity statistics. Boundary-Layer Meteorol 70: 95–132

    Article  Google Scholar 

  • Ca VT, Ashie Y, Asaeda T (2002) A k-epsilon turbulence closure model for the atmospheric boundary layer including urban canopy. Boundary-Layer Meteorol 102: 459–490

    Article  Google Scholar 

  • Cheng H, Castro IP (2002) Near wall flow over urban-like roughness. Boundary-Layer Meteorol 104: 229–259

    Article  Google Scholar 

  • Christen A (2005) Atmospheric turbulence and surface energy exchange in urban environments—results from the Basel Urban Boundary Layer Experiment (BUBBLE), vol 11 of stratus. Institute of Meteorology, Climatology and Remote Sensing, Department of Geosciences, University of Basel. 3-85977-266-X

  • Christen A, Vogt R (2004) Energy and radiation balance of a Central European city. Int J Climatol 24: 1395–1421

    Article  Google Scholar 

  • Christen A, van Gorsel E, Vogt R (2007) Coherent structures in urban roughness sublayer turbulence. Int J Climatol 27: 1955–1968

    Article  Google Scholar 

  • Coceal O, Thomas T, Castro I, Belcher S (2006) Mean flow and turbulence statistics over groups of urban-like cubical obstacles. Boundary-Layer Meteorol 121: 491–519

    Article  Google Scholar 

  • Dwyer MJ, Patton EG, Shaw RH (1997) Turbulent kinetic energy budgets from a large-eddy simulation of airflow above and within a forest canopy. Boundary-Layer Meteorol 84: 23–43

    Article  Google Scholar 

  • Elliott JA (1972) Microscale pressure fluctuations measured within the lower atmospheric boundary layer. J Fluid Mech 53: 351–383

    Article  Google Scholar 

  • Feddersen B (2005) Wind tunnel modelling of turbulence and dispersion above tall and highly dense urban roughness, vol 15934 of diss. ETH. Swiss Federal Institute of Technology (ETH), Zürich

    Google Scholar 

  • Feigenwinter C, Vogt R (2005) Detection and analysis of coherent structures in urban turbulence. Theor Appl Climatol 81: 219–230

    Article  Google Scholar 

  • Feigenwinter C, Vogt R, Parlow E (1999) Vertical structure of selected turbulence characteristics above an urban canopy. Theor Appl Climatol 62: 51–63

    Article  Google Scholar 

  • Finnigan JJ (2000) Turbulence in plant canopies. Annu Rev Fluid Mech 22: 519–557

    Article  Google Scholar 

  • Frenzen P, Vogel CA (2001) Further studies of atmospheric turbulence in layers near the surface: scaling the TKE budget above the roughness sublayer. Boundary-Layer Meteorol 99: 173–206

    Article  Google Scholar 

  • Garratt JR (1994) The atmospheric boundary layer. Cambridge University Press, UK, p 316

    Google Scholar 

  • Grimmond CSB, Oke TR (1999) Aerodynamic properties of urban areas derived from analysis of surface form. J Appl Meteorol 38: 1262–1292

    Article  Google Scholar 

  • Högström U, Bergström H, Alexandersson H (1982) Turbulence characteristics in a near-neutrally stratified urban atmosphere. Boundary-Layer Meteorol 23: 449–472

    Article  Google Scholar 

  • Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows—their structure and measurement. Oxford University Press, New York, p 289 pp

    Google Scholar 

  • Kastner-Klein P, Fedorovich E, Rotach MW (2001) A wind-tunnel study of organised turbulent motions in urban street canyons. J Wind Eng Ind Aerodyn 89: 849–861

    Article  Google Scholar 

  • Katul GG, Albertson JD, Hsieh CI, Conklin PS, Sigmon JT, Parlange MB, Knoerr KR (1996) The ‘inactive’ eddy motion and the large-scale turbulent pressure fluctuations in the dynamic sublayer. J Atmos Sci 6: 2512–2524

    Article  Google Scholar 

  • Leclerc MY, Beissner KC, Shaw RH, den Hartog G, Neumann HH (1990) The influence of atmospheric stability on the budgets of the Reynolds stress and turbulent kinetic energy within and above a deciduous forest. J Appl Meteorol 29: 916–933

    Article  Google Scholar 

  • Maier W (2005) 10 Jahre 3D-Stadtmodell Kanton Basel-Stadt. Geomat Schweiz 6: 348–350

    Google Scholar 

  • Maitani T, Seo T (1985) Estimates of velocity-pressure and velocity pressure gradient interactions in the surface layer above plant canopies. Boundary-Layer Meteorol 33: 51–60

    Article  Google Scholar 

  • Martilli A, Santiago JL (2007) CFD simulation of airflow over a regular array of cubes. Part II: analysis of spatial average properties. Boundary-Layer Meteorol 122: 635–654

    Article  Google Scholar 

  • McBean GA, Elliott JA (1975) Vertical transports of kinetic-energy by turbulence and pressure in boundary-layer. J Atmos Sci 32: 753–766

    Article  Google Scholar 

  • McMillen RT (1988) An eddy correlation technique with extended applicability to non-simple terrain. Boundary-Layer Meteorol 43: 231–245

    Article  Google Scholar 

  • Meyers TP, Baldocchi DD (1991) The budgets of turbulent kinetic energy and Reynolds stress within and above a deciduous forest. Agric For Meteorol 53: 207–222

    Article  Google Scholar 

  • Oikawa S, Meng Y (1995) Turbulence characteristics and organized motion in a suburban roughness sublayer. Boundary-Layer Meteorol 74: 289–312

    Article  Google Scholar 

  • Poggi D, Katul GG, Albertson JD (2004) Momentum transfer and turbulent kinetic energy budgets within a dense model canopy. Boundary-Layer Meteorol 111: 589–614

    Article  Google Scholar 

  • Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1994) Numerical recipes in C—the art of scientific computing, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Raupach MR, Shaw RH (1982) Averaging procedures for flow within vegetation canopies. Boundary-Layer Meteorol 22: 79–90

    Article  Google Scholar 

  • Raupach MR, Coppin PA, Legg BJ (1986) Experiments on scalar dispersion within a model-plant canopy. I. The turbulence structure. Boundary-Layer Meteorol 35: 21–52

    Article  Google Scholar 

  • Raupach MR, Finnigan JJ, Brunet Y (1989) Coherent eddies in vegetation canopies. In: Fourth proc. Australasian conf. heat mass transfer, Christchurch, New Zealand, May 9–12 1989, pp 75–90

  • Raupach MR, Finnigan JJ, Brunet Y (1996) Coherent eddies and turbulence in vegetation canopies: the mixing-layer analogy. Boundary-Layer Meteorol 78: 351–382

    Article  Google Scholar 

  • Rotach MW (1993a) Turbulence close to a rough urban surface. II. Variances and gradients. Boundary-Layer Meteorol 66: 75–92

    Article  Google Scholar 

  • Rotach MW (1993b) Turbulence close to a rough urban surface. I. Reynolds stress. Boundary-Layer Meteorol 65: 1–28

    Article  Google Scholar 

  • Rotach MW (1999) On the influence of the urban roughness sublayer on turbulence and dispersion. Atmos Environ 33: 401–408

    Article  Google Scholar 

  • Rotach MW, Gryning SE, Batchvarova E, Christen A, Vogt R (2004) Pollutant dispersion close to an urban surface—the BUBBLE tracer experiment. Theor Appl Climatol 87: 39–56

    Google Scholar 

  • Rotach MW, Vogt R, Bernhofer C, Batchvarova E, Christen A, Clappier A, Feddersen B, Gryning SE, Martucci G, Mayer H, Mitev V, Oke TR, Parlow E, Richner H, Roth M, Roulet YA, Ruffieux D, Salmond J, Schatzmann M, Voogt J (2005) BUBBLE—an urban boundary layer meteorology project. Theor Appl Climatol 81: 231–261

    Article  Google Scholar 

  • Roth M (2000) Review of atmospheric turbulence over cities. Q J Roy Meteorol Soc 126: 941–990

    Article  Google Scholar 

  • Roth M, Oke TR (1993a) Turbulent transfer relationships over an urban surface. I. Spectral characteristics. Q J Roy Meteorol Soc 119: 1071–1104

    Google Scholar 

  • Roth M, Oke TR (1993b) ‘Turbulent transfer relationships over an urban surface. II. Integral statistics. Q J Roy Meteorol Soc 119: 1105–1120

    Article  Google Scholar 

  • Roth M, Salmond JA, Satyanarayana ANV (2006) Methodological considerations regarding the measurement of turbulent fluxes in the urban roughness sublayer: the role of scintillometry. Boundary-Layer Meteorol 121: 351–375

    Article  Google Scholar 

  • Sabatino SD, Kastner-Klein P, Berkowicz R, Britter RE, Fedorovich E (2003) The modelling of turbulence from traffic in urban dispersion models. I. Theoretical considerations. Environ Fluid Mech 3: 129–143

    Article  Google Scholar 

  • Shaw RH, Paw KT, Zhang XJ, Gao W, den Hartog G, Neumann HH (1990) Retrieval of turbulent pressure fluctuations at the ground surface beneath a forest. Boundary-Layer Meteorol 50: 319–338

    Article  Google Scholar 

  • Shen SH, Leclerc MY (1997) Modelling the turbulence structure in the canopy layer. Agric For Meteorol 87: 3–25

    Article  Google Scholar 

  • Tennekes H, Lumley JL (1972) A first course in turbulence. MIT Press, Cambridge

    Google Scholar 

  • Vogt R, Christen A, Rotach MW, Roth M, Satyanarayana ANV (2006) Temporal dynamics of CO2 fluxes and profiles over a Central European city. Theor Appl Climatol 84(1–3): 117–126

    Article  Google Scholar 

  • Wilczak JM, Bedard AJ (2004) A new turbulence microbarometer and its evaluation using the budget of horizontal heat flux. J Atmos Ocean Technol 21: 1170–1181

    Article  Google Scholar 

  • Wilczak JM, Oncley SP, Stage SA (2001) Sonic anemometer tilt correction algorithms. Boundary-Layer Meteorol 99: 127–150

    Article  Google Scholar 

  • Willis GE, Deardorff JW (1976) On the use of Taylor’s hypothesis for diffusion in the mixed layer. Q J Roy Meteorol Soc 102: 817–822

    Article  Google Scholar 

  • Wyngaard JC, Clifford SF (1977) Taylor’s hypothesis and high frequency turbulence spectra. J Atmos Sci 34: 922–929

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Christen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christen, A., Rotach, M.W. & Vogt, R. The Budget of Turbulent Kinetic Energy in the Urban Roughness Sublayer. Boundary-Layer Meteorol 131, 193–222 (2009). https://doi.org/10.1007/s10546-009-9359-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-009-9359-5

Keywords

Navigation