Skip to main content
Log in

Modelling Near-Surface Low Winds over Land under Stable Conditions: Sensitivity Tests, Flux-Gradient Relationships, and Stability Parameters

  • Original Paper
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Low or weak wind-speed conditions, roughly defined as the periods when the mean wind speed at 10 m above the ground is 2 ms−1 or less, are of considerable practical interest. However, they are not readily amenable to treatment within prognostic meteorological models and, consequently, difficult to predict, especially when the ambient stability is strong. In this paper, we apply an Eε prognostic meteorological model to simulate near-surface meteorology and, focusing on low wind speeds, compare the predictions with measurements from two independent datasets. A sensitivity analysis is performed to investigate the possible reasons for the relatively inferior model performance for low winds when the atmosphere is stably stratified. A comprehensive data analysis is carried out to study low wind stable conditions, concentrating on the validity of various forms of flux–gradient relationships for momentum and heat within the framework of the Monin-Obukhov similarity theory, which models employ for calculating surface fluxes. The observed behaviour of various stability parameters, such as the Richardson number, is investigated. The results point to inadequacies of the current flux–gradient relationships, especially regarding momentum, under strongly stable conditions as being a dominant reason for the poor low wind predictions. The modelling issues identified are not just restricted to the present model, but are general in nature. The use of an alternative stability function for momentum under strongly stable conditions is explored. It results in improved model performance for low winds; however, further research is needed to better understand strongly stable flows in the lower atmosphere and to develop methods that can translate that understanding to operational meteorological modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baas P, Steeneveld GJ, van de Wiel BJH, Holtslag AAM (2006) Exploring self-correlation in flux–gradient relationships for stably stratified conditions. J Atmos Sci 63: 3045–3054. doi:10.1175/JAS3778.1

    Article  Google Scholar 

  • Beljaars ACM, Holtslag AAM (1991) Flux parameterization over land surfaces for atmospheric models. J Appl Meteorol 30: 327–341 doi:10.1175/1520-0450(1991)030<0327:FPOLSF>2.0.CO;2

    Article  Google Scholar 

  • Brutsaert W (1982) Evaporation into the atmosphere. Kluwer Academic Publishers, Dordrecht, p 299

    Google Scholar 

  • Businger JA, Wyngaard JC, Izumi Y, Bradley EF (1971) Flux-profile relationships in the atmospheric surface layer. J Atmos Sci 28: 181–189 doi:10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2

    Article  Google Scholar 

  • Carson DJ, Richards PJR (1978) Modelling surface turbulent fluxes in stable conditions. Boundary-Layer Meteorol 14: 67–81. doi:10.1007/BF00123990

    Article  Google Scholar 

  • Cheng Y, Brutsaert W (2005) Flux-profile relationships for wind speed and temperature in the stable atmospheric boundary layer. Boundary-Layer Meteorol 114: 519–538. doi:10.1007/s10546-004-1425-4

    Article  Google Scholar 

  • Cheng Y, Parlange MB, Brutsaert W (2005) Pathology of Monin-Obukhov similarity in the stable boundary layer. J Geophys Res 110: D06101. doi:10.1029/2004JD004923

    Article  Google Scholar 

  • Cuxart J, Holtslag AAM, Beare RJ, Bazile E, Beljaars A, Cheng A, Conangla L, Ek M, Freedman F, Hamdi R, Kerstein A, Kitagawa H, Lenderink G, Lewellen D, Mailhot J, Mauritsen T, Perov V, Schayes G, Steeneveld G-J, Svensson G, Taylor P, Weng W, Wunsch S, Xu K-M (2006) Single-column model intercomparison for a stably stratified atmospheric boundary layer. Boundary-Layer Meteorol 118: 273–303. doi:10.1007/s10546-005-3780-1

    Article  Google Scholar 

  • Duynkerke PG (1988) Application of the Eε turbulence closure model to the neutral and stable atmospheric boundary layer. J Atmos Sci 45: 865–880 doi:10.1175/1520-0469(1988)045<0865:AOTTCM>2.0.CO;2

    Article  Google Scholar 

  • Dyer AJ (1974) A review of flux-profile relationships. Boundary-Layer Meteorol 7: 363–372. doi:10.1007/BF00240838

    Article  Google Scholar 

  • Galperin B, Sukoriansky S, Anderson PS (2007) On the critical Richardson number in stably stratified turbulence. Atmos Sci Lett 8: 65–69. doi:10.1002/asl.153

    Article  Google Scholar 

  • Garratt JR (1992) The atmospheric boundary layer. Cambridge University Press, Cambridge, p 316

    Google Scholar 

  • Grachev AA, Fairall CW, Persson POG, Andreas EL, Guest PS (2005) Stable boundary-layer scaling regimes: The SHEBA data. Boundary-Layer Meteorol 116: 201–235. doi:10.1007/s10546-004-2729-0

    Article  Google Scholar 

  • Grell GA, Dudhia J, Stauffer DR (1995) A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5). Report NCAR/TN-398+STR, 117 pp

  • Hicks BB (1976) Wind profile relationships from the Wangara experiments. Q J R Meteorol Soc 102: 535–551

    Google Scholar 

  • Högström U (1996) Review of some basic characteristics of the atmospheric surface layer. Boundary-Layer Meteorol 78: 215–246. doi:10.1007/BF00120937

    Article  Google Scholar 

  • Holtslag AAM, Nieuwstadt FTM (1986) Scaling the atmospheric boundary layer. Boundary-Layer Meteorol 36: 201–209. doi:10.1007/BF00117468

    Article  Google Scholar 

  • Hurley PJ (2005) The Air Pollution Model (TAPM) Version 3. Part 1: technical description. CSIRO Atmospheric Research Technical Paper 71. 54 p. Available http://www.cmar.csiro.au/e-print/open/hurley_2005b.pdf

  • Hurley PJ, Physick WL, Luhar AK (2005) TAPM: a practical approach to prognostic meteorological and air pollution modelling. Environ Model Softw 20: 737–752. doi:10.1016/j.envsoft.2004.04.006

    Article  Google Scholar 

  • Klipp CL, Mahrt L (2004) Flux-gradient relationship, self-correlation and intermittency in the stable boundary layer. Q J R Meteorol Soc 130: 2087–2103. doi:10.1256/qj.03.161

    Article  Google Scholar 

  • Louis JF (1979) A parametric model of vertical eddy fluxes in the atmosphere. Boundary-Layer Meteorol 17: 187–202. doi:10.1007/BF00117978

    Article  Google Scholar 

  • Mahrt L (1998) Stratified atmospheric boundary layers and breakdown of models. Theor Comput Fluid Dyn 11: 263–279. doi:10.1007/s001620050093

    Article  Google Scholar 

  • Mahrt L, Sun J, Blumen W, Delany T, Oncley S (1998) Nocturnal boundary-layer regimes. Boundary-Layer Meteorol 88: 255–278. doi:10.1023/A:1001171313493

    Article  Google Scholar 

  • Nieuwstadt FTM (1984) The turbulent structure of the stable nocturnal boundary layer. J Atmos Sci 41:2202–2216. doi:10.1175/1520-0469(1984)041<2202:TTSOTS>2.0.CO;2

    Article  Google Scholar 

  • Oncley SP, Friehe CA, Larue JC, Businger JA, Itsweire EC, Chang SS (1996) Surface-layer fluxes, profiles, and turbulence measurements over uniform terrain under near neutral conditions. J Atmos Sci 53: 1029–1044 doi:10.1175/1520-0469(1996)053<1029:SLFPAT>2.0.CO;2

    Article  Google Scholar 

  • Pahlow M, Parlange MB, Porté-Agel F (2001) Monin-Obukhov similarity in the stable atmospheric boundary layer. Boundary-Layer Meteorol 99: 225–248. doi:10.1023/A:1018909000098

    Article  Google Scholar 

  • Poulos GS, Blumen W, Fritts DC, Lundquist JK, Sun J, Burns SP, Nappo C, Banta R, Newsome R, Cuxart J, Terradellas E, Balsley B, Jensen M (2002) CASES-99: A comprehensive investigation of the stable nocturnal boundary layer. Bull Am Meteorol Soc 83: 555–581 doi:10.1175/1520-0477(2002)083<0555:CACIOT>2.3.CO;2

    Article  Google Scholar 

  • Poulos G, Burns S (2003) An evaluation of bulk Ri-based surface layer flux formulations for stable and very stable conditions with intermittent turbulence. J Atmos Sci 60: 2523–2537 doi:10.1175/1520-0469(2003)060<2523:AEOBRS>2.0.CO;2

    Article  Google Scholar 

  • Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1986) Numerical recipes. Cambridge University Press, Cambridge, p 818

    Google Scholar 

  • Rooney GG, Claxton BM (2006) Comparison of the Met Office’s surface exchange scheme, MOSES, against field observations. Q J R Meteorol Soc 132: 425–446. doi:10.1256/qj.04.95

    Article  Google Scholar 

  • Sharan M, Gopalakrishnan SG (1997) Comparative evaluation of eddy exchange coefficients for strong and weak wind stable boundary layer modelling. J Appl Meteorol 36: 545–559 doi:10.1175/1520-0450(1997)036<0545:CEOEEC>2.0.CO;2

    Article  Google Scholar 

  • Smith FB (1992) Low wind-speed meteorology. Meteorol Magn 121: 141–151

    Google Scholar 

  • Steeneveld GJ, van de Wiel BJH, Holtslag AAM (2006) Modeling the evolution of the atmospheric boundary layer coupled to the land surface for three contrasting nights in CASES-99. J Atmos Sci 63: 920–935. doi:10.1175/JAS3654.1

    Article  Google Scholar 

  • Stull RB (1988) An introduction to boundary layer meteorology. Kluwer Academic Publishers, Dordrecht, p 666

    Google Scholar 

  • Sukoriansky S, Galperin B, Perov V (2005) Application of a new spectral theory of stably stratified turbulence to the atmospheric boundary layer over sea ice. Boundary-Layer Meteorol 117: 231–257. doi:10.1007/s10546-004-6848-4

    Article  Google Scholar 

  • van Ulden AP, Holtslag AAM (1985) Estimation of atmospheric boundary layer parameters for diffusion applications. J Clim Appl Meteorol 24: 1196–1207 doi:10.1175/1520-0450(1985)024<1196:EOABLP>2.0.CO;2

    Article  Google Scholar 

  • Yagüe C, Viana S, Maqueda G, Redondo JM (2006) Influence of stability on the flux–profile relationships for wind speed, ϕ m , and temperature, ϕ h , for the stable atmospheric boundary layer. Nonlinear Process Geophys 13: 185–203

    Google Scholar 

  • Webb EK (1970) Profile relationships: The log-linear range and extension to strong stability. Q J R Meteorol Soc 96: 67–90. doi:10.1002/qj.49709640708

    Article  Google Scholar 

  • Willmott CJ (1981) On the validation of models. Phys Geogr 2: 183–194

    Google Scholar 

  • Wyngaard JC, Coté OR (1972) Cospectral similarity in the atmospheric surface layer. Q J R Meteorol Soc 98: 590–603. doi:10.1002/qj.49709841708

    Article  Google Scholar 

  • Zilitinkevich SS, Elperin T, Kleeorin N, Rogachevskii I (2007) Energy- and flux-budget (EFB) turbulence closure model for stably stratified flows. Part I: steady-state, homogeneous regimes. Boundary-Layer Meteorol 125: 167–191. doi:10.1007/s10546-007-9189-2

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok K. Luhar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luhar, A.K., Hurley, P.J. & Rayner, K.N. Modelling Near-Surface Low Winds over Land under Stable Conditions: Sensitivity Tests, Flux-Gradient Relationships, and Stability Parameters. Boundary-Layer Meteorol 130, 249–274 (2009). https://doi.org/10.1007/s10546-008-9341-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-008-9341-7

Keywords

Navigation