Skip to main content
Log in

Street Versus Rooftop Level Concentrations of Fine Particles in a Cambridge Street Canyon

  • Original Paper
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Dispersion of particles, as evidenced by changes in their number distributions (PNDs) and concentrations (PNCs), in urban street canyons, is still not well understood. This study compares measurements by a fast-response particle spectrometer (DMS500) of the PNDs and the PNCs (5–1000 nm, sampled at 1 Hz) at street and rooftop levels in a Cambridge UK street canyon, and examines mixing, physical and chemical conversion processes, and the competing influences of traffic volume and rooftop wind speed on the PNDs and the PNCs in various size ranges. PNCs at street level were ≈6.5 times higher than at rooftop. Street-level PNCs followed the traffic volume and decreased with increasing wind speed, showing a larger influence of wind speed on 30–300 nm particles than on 5–30 nm particles. Conversely, rooftop PNCs in the 5–30 nm size range increased with wind speed, whereas those for particles between 30 and 300 nm did not vary with wind speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AQEG (2005) Particulate matter in the United Kingdom, Defra London, 444 pp

  • Bauman SE, Ferek R, Williams ET, Finston HL, Ferrand EF, Santowski J (1982) Street level versus rooftop sampling: carbon monoxide and aerosol in New York city. Atmos Environ 16: 2489–2496

    Article  Google Scholar 

  • Biskos G, Reavell K, Collings N (2005) Description and theoretical analysis of a Differential Mobility Spectrometer. Aerosol Sci Technol 39: 527–541

    Article  Google Scholar 

  • Charron A, Harrison RM (2003) Primary particle formation from vehicle emissions during exhaust dilution in the road side atmosphere. Atmos Environ 37: 4109–4119

    Article  Google Scholar 

  • Collings N, Reavell K, Hands T, Tate J (2003) Roadside aerosol measurements with a fast particle spectrometer. Soc Automotive Eng 20035407

  • Curtius J (2006) Nucleation of atmospheric aerosol particles. C R Physique 7: 1027–1045

    Article  Google Scholar 

  • Davidson C, Phalen R, Solomon P (2005) Airborne particulate matter and human health: a review. Aerosol Sci Technol 39: 737–749

    Google Scholar 

  • De Paul FT, Sheih CM (1986) A tracer study of dispersion in an urban street canyon. Atmos Environ 20: 455–459

    Article  Google Scholar 

  • Harrison RM, Grenfell JL, Savage N, Allen A, Clemitsaw KC, Penkett S, Hewitt CN, Davison B (2000) Observation of new particle production in the atmosphere of a moderately polluted site in eastern England. J Geophys Res 105: 17819–17832

    Article  Google Scholar 

  • Hinds WC (1999) Aerosol technology: Properties, behaviour and measurement of airborne particles, 2nd edn. Wiley, UK, p 783 pp

    Google Scholar 

  • Kastner–Klein P, Fedorovich E, Ketzel M, Berkowicz R, Britter R (2003) The modelling of turbulence from traffic in urban dispersion models—Part II: evaluation against laboratory and full–scale concentration measurements in street canyons. Environ Fluid Mech 3: 145–172

    Article  Google Scholar 

  • Kerminen V-M, Pijrola L, Kulmala M (2001) How significantly does coagulational scavenging limit atmospheric particle production. J Geophys Res 106: 24119–24125

    Article  Google Scholar 

  • Ketzel M, Berkowicz R, Muller WJ, Lohmeyer A (2002) Dependence of street canyon concentrations on above–roof wind speed—implications for numerical modelling. Int J Environ Pollut 17: 356–366

    Article  Google Scholar 

  • Kittelson DB, Watts WF, Johnson JP (2004) Nanoparticle emissions on Minnesota highways. Atmos Environ 38: 9–19

    Article  Google Scholar 

  • Kulmala M, Pijrola L, Makela JM (2000) Stable sulphate clusters as a source of new atmospheric particles. Nature 404: 66–69

    Article  Google Scholar 

  • Kulmala M, Vehkamaki H, Petaja T, Dal Maso M, Lauri A, Kerminen V-M, Birmili W, McMurry PH (2004) Formation and growth rates of ultrafine particles: a review of observations. J Aerosol Sci 35: 143–176

    Article  Google Scholar 

  • Kumar P, Fennel P, Britter R (2007) Measurements and dispersion behaviour of particles in various size ranges (5 nm >dp< 1000 nm) in a Cambridge street canyon. In: Proccedings of the 11th international conference on harmonisation within atmospheric dispersion modelling for regulatory purposes. Cambridge, UK, pp 368–372. http://www.harmo.org/conferences/proceedings/_Cambridge/publishedSections/Pp368–372.pdf

  • Kumar P, Fennell P, Britter R (2008a) Measurements of particles in the 5–1000 nm range close to road level in an urban street canyon. Sci Total Environ 390: 437–447

    Article  Google Scholar 

  • Kumar P, Fennell P, Langley D, Britter R (2008b) Pseudo–simultaneous measurements for vertical variations of coarse, fine and ultra fine particles in an urban street canyon. Atmos Environ 42: 4304–4319

    Article  Google Scholar 

  • Kumar P, Fennell P, Britter R (2008c) Effect of wind direction and speed on the dispersion of nucleation and accumulation mode particles in an urban street canyon. Sci Total Environ 402: 82–94

    Article  Google Scholar 

  • Li XL, Wang JS, Tu XD, Liu W, Huang L (2007) Vertical variations of particle number concentration and size distribution in a street canyon in Shanghai, China. Sci Total Environ 378: 306–316

    Article  Google Scholar 

  • Longley ID, Gallagher MW, Dorsey JR, Flynn M, Allan JD, Alfarra D, Inglish D (2003) A case study of aerosol (4.6 nm < D p  < 10μm) number and mass size distribution measurements in a busy street canyon in Manchester, U.K. Atmos Environ 37: 1563–1571

    Article  Google Scholar 

  • Makela J, Hameri K, Vakeva M, Aalto P, Laakso L, Kulmala M, Charlson RJ (1998) On the spatial scale of new particle formation in Sothern Finland. J Aerosol Sci 29: 5215–5216

    Google Scholar 

  • Oberdorster G (2000) Toxicology of ultrafine particles: in vivo studies. Philos Trans R Soc London A 358: 2719–2740

    Article  Google Scholar 

  • Oke TR (1988) Street design and urban canopy layer climate. Energy Buildings 11: 103–113

    Article  Google Scholar 

  • Peters A, Wichmann HE (2001) Epidemiological basis for particulate air pollution health standards. Epidemiology 12: 544

    Google Scholar 

  • Pope CA III (2000) Review: epidemiological basis for particulate air pollution health standards. Aerosol Sci Technol 32: 4–14

    Article  Google Scholar 

  • Qin Y, Kot SC (1993) Dispersion of vehicular emission in street canyons, Guanghou city, South China (P.R.C). Atmos Environ 27B: 283–291

    Google Scholar 

  • QUARG (1996) Airborne particulate matter in the United Kingdom Technical report, Department of Environment, London, UK, 188 pp

  • Schauer JJ, Hildermann LM, Mazurek MA, Cass GR, T. Simoneit SBT (1996) Source apportionment of airborne particulate matter using organic compounds as tracers. Atmos Environ 30: 3837–3855

    Article  Google Scholar 

  • Shi PJ, Khan AA, Harrison RM (1999) Measurements of ultra fine particle concentration and size distribution in the urban atmosphere. Sci Total Environ 235: 51–64

    Article  Google Scholar 

  • Solazzo E, Vardoulakis S, Cai X (2007) Evaluation of traffic–producing turbulence schemes within operating schemes within operational street pollution models using road side measurements. Atmos Environ 41: 5357–5370

    Article  Google Scholar 

  • Symonds JPR, Reavell KSJ, Olfert JS, Campbell BW, Swift SJ (2007) Diesel soot mass calculations in real–time with a differential mobility spectrometer. J Aerosol Sci 38: 52–68

    Article  Google Scholar 

  • Tuch T, Brand P, Wichmann HE, Heyder J (1997) Variations of particle number and mass concentration in various size ranges of ambient aerosols in eastern Germany. Atmos Environ 31: 4193–4197

    Article  Google Scholar 

  • Vakeva M, Hameri K, Kulmala M, Lahdes R, Ruuskanen J, Laitinen T (1999) Street level versus rooftop concentrations of submicron aerosol particles and gaseous pollutants in an urban street canyon. Atmos Environ 33: 1385–1397

    Article  Google Scholar 

  • Van Dingenen R, Raes F, Putaud J-P, Baltensperger U, Charron A, Facchini M-C, Decesari S, Fuzzi S, Gehrig R, Hansson H-C (2004) A European aerosol phenomenology—1: physical characterstics of particulate matter at kerbside, urban, rural and background sites in Europe. Atmos Environ 38: 2561–2577

    Article  Google Scholar 

  • Vardoulakis S, Gonzalez-Flesca N, Fisher BEA (2002) Assessment of traffic-related air pollution in two street canyons in Paris: implications for exposure studies. Atmos Environ 36: 1025–1039

    Article  Google Scholar 

  • Vardoulakis S, Fisher BRA, Pericleous K, Gonzalez-Flesca N (2003) Modelling air quality in street canyons: a review. Atmos Environ 37: 155–182

    Article  Google Scholar 

  • Wehner B, Weidensohler A (2003) Long term measurements of submicrometer urban aerosols: statistical analysis for correlations with meteorological conditions and trace gases. Atmos Chem Phys 3: 867–879

    Article  Google Scholar 

  • Zoumakis NM (1995) A note on average vertical profiles of vehicular pollutant concentrations in urban Street Canyons. Atmos Environ 29: 3719–3725

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashant Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, P., Fennell, P.S., Hayhurst, A.N. et al. Street Versus Rooftop Level Concentrations of Fine Particles in a Cambridge Street Canyon. Boundary-Layer Meteorol 131, 3–18 (2009). https://doi.org/10.1007/s10546-008-9300-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-008-9300-3

Keywords

Navigation