Skip to main content
Log in

Influence of Nocturnal Low-level Jets on Eddy-covariance Fluxes over a Tall Forest Canopy

  • Original Paper
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Observations of low-level jets (LLJs) at the Howland AmeriFlux site in the USA and the jet’s impact on nocturnal turbulent exchange and scalar fluxes over a tall forest canopy are discussed. Low-frequency motions and turbulent bursts characterize moderately strong LLJs, whereas low-frequency motions are suppressed during periods with strong LLJs and enhanced shear. An analysis based on the shear-sheltering hypothesis seeks to elucidate the effect of LLJs on flux measurements. In the absence of shear sheltering, large eddies penetrate the roughness sublayer causing enhanced mixing while during periods with shear sheltering, mixing is reduced. In the absence of the latter, ‘upside-down’ eddies are primarily responsible for the enhanced velocity variances, scalar and momentum fluxes. The integral length scales over the canopy are greater than the canopy height. The variance spectra and cospectra from the wavelet analysis indicate that large eddies (spatial scale greater than the low-level jet height) interact with active canopy-scale turbulence, contributing to counter-gradient scalar fluxes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baldocchi DD and Meyers TP (1988). Turbulence structure in a deciduous forest. Boundary-Layer Meteorol 43: 345–364

    Article  Google Scholar 

  • Banta RM, Newsom RK, Lundquist JK, Pichugina YL, Coulter RL and Mahrt L (2002). Nocturnal low-level jet characteristics over kansas during cases-99. Boundary-Layer Meteorol 105: 221–252

    Article  Google Scholar 

  • Banta RM, Pichugina YL and Newsom RK (2003). Relationship between low-level jet properties and turbulence kinetic energy in the nocturnal stable boundary layer. J Atmos Sci 60: 2549–2555

    Article  Google Scholar 

  • Banta RM, Pichugina YL and Alan BW (2006). Turbulent velocity-variance profiles in the stable boundary layer generated by a nocturnal low-level jet. J Atmos Sci 63: 2700–2719

    Article  Google Scholar 

  • Beyrich F (1994). Sodar observations of the stable boundary-layer height in relation to the nocturnal low-level jet. Meteorol Zeitschrift 3: 29–34

    Google Scholar 

  • Blackadar AK (1957). Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bull Amer Meteorol Soc 38: 283–290

    Google Scholar 

  • Bonner WD (1968). Climatology of the low-level jet. Mon Wea Rev 96: 833–850

    Article  Google Scholar 

  • Brunet Y and Irvine MR (2000). The control of coherent eddies in vegetation canopies: streamwise structure spacing, canopy shear scale and atmospheric stability. Boundary-Layer Meteorol 94: 139–163

    Article  Google Scholar 

  • Businger JA (1973) Workshop on the planetary boundary layer. In: Haugen DA (ed) Amer Meteorol Soc 67–98

  • Cava D, Schipa S and Giostra U (2005). Investigation of low-frequency perturbations induced by a steep obstacle. Boundary-Layer Meteorol 115: 27–45

    Article  Google Scholar 

  • Collineau S and Brunet Y (1993). Detection of turbulent coherent motions in a forest canopy, Part I: wavelet analysis. Boundary-Layer Meteorol 65: 357–379

    Google Scholar 

  • Collineau S and Brunet Y (1993). Detection of turbulent coherent motions in a forest canopy, Part II: timescales and conditional averages. Boundary-Layer Meteorol 66: 49–73

    Article  Google Scholar 

  • Corsmeier U, Kalthoff N, Kolle O, Kotzian M and Fiedler F (1997). Ozone concentration jump in the stable nocturnal boundary-layer during a LLJ-event. Atmos Environ 31: 1977–1989

    Article  Google Scholar 

  • Cuxart J, Morales G, Terradellas E and Yague C (2002). Study of coherent structures and estimation of the pressure transport terms for the nocturnal stable boundary layer. Boundary-Layer Meteorol 105: 305–328

    Article  Google Scholar 

  • Daubechies I (1993). Ten Lectures on Wavelets. CBMS-NSF regional conference series in Applied Mathematics SIAM 61: 357

    Google Scholar 

  • Falge E, Baldocchi D, Olson R, Anthoni P, Aubinet M, Bernhofer C, Burba G, Ceulemans R, Clement R, Dolman H, Granier A, Gross P, Grünwald T, Hollinger D, Jensen N, Katul G, Keronen P, Kowalski A, Lai CT, Law BE, Meyers T, Moncrieff J, Moors E, Munger JW, Pilegaard K, Rannik Ü, Rebmann C, Suyker A, Tenhunen J, Tu K, Verma S, Vesala T, Wilson K and Wofsy S (2001). Gap filling strategies for defensible annual sums of net ecosystem exchange. Agric For Meteorol 107: 43–69

    Article  Google Scholar 

  • Farge M (1992). Wavelet transforms and their applications to turbulence. Ann Rev Fluid Mech 24: 395–457

    Article  Google Scholar 

  • Finnigan JJ (1979). Turbulence in waving wheat. I Mean statistics and Honami. Boundary-Layer Meteorol 16: 181–211

    Article  Google Scholar 

  • Finnigan JJ (2000). Turbulence in plant canopies. Ann Rev Fluid Mech 32: 519–571

    Article  Google Scholar 

  • Gao W and Li BL (1993). Wavelet analysis of coherent structures at the atmosphere–forest Interface. J Appl Meteorol 32: 1717–1725

    Article  Google Scholar 

  • Giostra U, Cava D and Schipa S (2002). Structure functions in a wall-turbulent shear flow. Boundary-Layer Meteorol 103: 337–359

    Article  Google Scholar 

  • Grossman A and Morlet J (1984). Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM J Math Anal 15: 723–736

    Article  Google Scholar 

  • Gu LH, Falge EM, Boden T, Baldocchi DD, Black TA, Saleska SR, Suni T, Verma SB, Vesala T, Wofsy SC and Xu LK (2005). Objective threshold determination for nighttime eddy flux filtering. Agric For Meteorol 128: 179–197

    Article  Google Scholar 

  • Högström U (1990). Analysis of turbulence structure in the surface layer with a modified similarity theory formulation for neutral conditions. J Atmos Sci 47: 1949–1972

    Article  Google Scholar 

  • Högström U (1996). Review of some basic characteristics of the atmospheric surface layer. Boundary-Layer Meteorol 78: 215–246

    Article  Google Scholar 

  • Högström U, Hunt JCR and Smedman A (2002). Theory and measurements for turbulence spectra and variances in the atmospheric neutral surface layer. Boundary-Layer Meteorol 103: 101–124

    Article  Google Scholar 

  • Hollinger DY, Goltz SM, Davidson EA, Lee JT, TuK and Valentine HT (1999). Seasonal Patterns and environmental control of carbon dioxide and water vapour exchange in an ecotonal boreal forest. Global Change Biol 5: 891–902

    Article  Google Scholar 

  • Hollinger DY, Aber J, Dail B, Davidson EA, Goltz SM, Hughes H, Leclerc MY, Lee JT, Richardson AD, Rodrigues C, Scott NA, Achuatavarier D and Walsh J (2004). Spatial and temporal variability in forest-atmosphere CO2 exchange. Global Change Biol 10: 1689–1706

    Article  Google Scholar 

  • Hunt JCR and Durbin PA (1999). Perturbed vortical layers and shear-sheltering. Fluid Dyn Res 24: 375–404

    Article  Google Scholar 

  • Hunt JCR and Morrison JF (2000). Eddy structure in turbulent boundary layers. Euro J.Mech B – Fluids 19: 673–694

    Article  Google Scholar 

  • Kaimal JC and Finnigan JJ (1994). Atmospheric boundary layer flows: their structure and measurement. Oxford University Press, UK,, 304 pp

    Google Scholar 

  • Kalthoff N, Horlacher V, Corsmeier U, Voltz-Thomas A, Kolahgar B, Giess H, Mollmann-Coers M and Knaps A (2000). Influence of valley winds on transport and dispersion of airborne pollutants in the Freiburg-Schauinsland Area. J Geophys Res 105: 1585–1597

    Article  Google Scholar 

  • Karipot A, Leclerc MY, Zhang G, Martin T, Starr G, Hollinger D, Hipps LE, McCaughey LE, Anderson DJ and Hendrey GR (2006). Nocturnal CO2 exchange over a tall forest canopy associated with intermittent low-level jet activity. Theor Appl Climatol 85: 243–248

    Article  Google Scholar 

  • Katul GG and Parlange MB (1995). The spatial structure of turbulence in the dynamic and dynamic-convective sublayers using wavelet transforms. Boundary-Layer Meteorol 75: 81–108

    Article  Google Scholar 

  • Lee X and Hu X (2002). Forest-air fluxes of carbon and energy over non-flat terrain. Boundary-Layer Meteorol 103: 277–301

    Article  Google Scholar 

  • McNaughton KG and Brunet Y (2002). Townsend’s hypothesis coherent structures and Monin-Obukhov similarity. Boundary-Layer Meteorol 102: 161–175

    Article  Google Scholar 

  • Mahrt L (1999). Stratified atmospheric boundary layers. Boundary-Layer Meteorol 90: 375–396

    Article  Google Scholar 

  • Mahrt L and Vickers D (2002). Contrasting vertical structures of nocturnal boundary-layers. Boundary-Layer Meteorol 105: 351–363

    Article  Google Scholar 

  • Meyers SD, Kelley BG and O’Brien JJ (1993). An introduction to waveleta analysis in oceanography and meteorology: with application to the dispersion of Yanai waves. Mon Wea Rev 121: 2858–28661

    Article  Google Scholar 

  • Mursch-Radlgruber E (1995). Observations of flow structure in a small forested valley system. Theor Appl Climatol 52: 3–17

    Article  Google Scholar 

  • Nappo CJ (1991). Sporadic breakdown of stability in the PBL over simple and complex terrain. Boundary-Layer Meteorol 54: 69–87

    Article  Google Scholar 

  • Newsom RK and Banta RM (2002). Shear-flow instability in the stable nocturnal boundary-layer as observed by Doppler lidar during CASES-99. J Atmos Sci 60: 16–33

    Article  Google Scholar 

  • Piper M and Lundquist JK (2004). Surface layer turbulence measurements during a frontal passage. J Atmos Sci 61(14): 1768–1780

    Article  Google Scholar 

  • Poulos GS, Bossert JE, McKee TB and Pielke RA (2000). The interaction of katabatic flow and mountain waves, Part I: observations and idealized simulations. J Atmos Sci 57: 1919–1936

    Article  Google Scholar 

  • Poulos GS, Bossert JE, McKee TB and Pielke RA (2007). The interaction of katabatic flow and mountain waves. Part II: case study analysis and conceptual model. J Atmos Sci 64: 1857–1879

    Article  Google Scholar 

  • Prabha TV, Leclerc MY, Karipot A and Hollinger DY (2007). Low-frequency effects on eddy covariance fluxes under the influence of a low-level jet. J Appl Meteor Climatol 46: 338–352

    Article  Google Scholar 

  • Pulido M and Chimonas G (2001). Forest canopy waves: the long wavelength component. Boundary-layer Meteorol 100: 209–224

    Article  Google Scholar 

  • Qiu J, Paw UKT and Shaw RH (1995). Pseudo-wavelet analysis of turbulence patterns in three vegetation layers. Boundary-layer Meteorol 72: 177–204

    Article  Google Scholar 

  • Rannik U and Vesala T (1999). Autoregressive filtering versus linear detrending in estimation of fluxes by the eddy covariance method. Boundary-Layer Meteorol 91: 259–280

    Article  Google Scholar 

  • Raupach MR (1981). Conditional statistics of reynolds stress in rough-wall and smooth-wall turbulent boundary layers. J Fluid Mech 108: 63–382

    Article  Google Scholar 

  • Raupach MR, Finnigan JJ and Brunet Y (1996). Coherent eddies and turbulence in vegetation canopies. Boundary-Layer Meteorol 78: 351–382

    Article  Google Scholar 

  • Reitebuch O, Strassburger A, Emeis S and Kuttler W (2000). Nocturnal secondary ozone concentration maxima analysed by sodar observations and surface measurements. Atmos Environ 34: 4315–4329

    Article  Google Scholar 

  • Salmond J (2005). Wavelet analysis of intermittent turbulence in a very stable nocturnal boundary layer: implications for the vertical mixing of ozone. Boundary-Layer Meteorol 114: 463–488

    Article  Google Scholar 

  • Shaw RH, Tavanger J and Ward DP (1983). Structure of the Reynolds stress in a canopy layer. J Climate Appl Meteorol 22: 922–931

    Article  Google Scholar 

  • Smedman AS, Bergström H and Högström U (1995). Spectra variances and length scales in a marine stable boundary-layer dominated by a low-level jet. Boundary-Layer Meteorol 76: 211–232

    Article  Google Scholar 

  • Smedman AS, Högström U and Hunt JCR (2004). Effects of shear-sheltering in a stable atmospheric boundary-layer with strong shear. Quart J Roy Meterol Soc 130: 31–50

    Article  Google Scholar 

  • Smeets CJP, Duynkerke PG and Vugts HF (1998). Turbulence characteristics of the stable boundary layer over a mid-latitude glacier. Part I: C combination of katabatic and large-scale forcing. Boundary-Layer Meteorol 87: 117–145

    Article  Google Scholar 

  • Stull RB (1988). An introduction to boundary layer meteorology. Kluwer Academic Publishers, Dordrecht,, 666 pp

    Google Scholar 

  • Sun J, Burns SP, Lenschow DH, Banta R, Newsom R, Coulter R, Frasier S, Ince T, Nappo C, Cuxart J, Blumen W, Lee X and Hu XZ (2002). Intermittent turbulence associated with a density current passage in the stable boundary-layer. Boundary-Layer Meteorol 105: 199–219

    Article  Google Scholar 

  • Terradellas E, Morales G, Cuxart J and Yagüe C (2001). Wavelet methods: application to the study of the stable atmospheric boundary-layer under non-stationary conditions. Dyn Atmos Oceans 34: 225–244

    Article  Google Scholar 

  • Torrence C and Compo GP (1998). A practical guide to wavelet analysis. Bull Amer Meteorol Soc 79(1): 61–78

    Article  Google Scholar 

  • Townsend AA (1961). Equilibrium layers and wall turbulence. J Fluid Mech 11: 97–120

    Article  Google Scholar 

  • Turner BJ, Leclerc MY, Gauthier M, Moore KE and Fitzjaarald DR (1994). Identification of turbulence structures above a forest canopy using the wavelet transform. J Geophys Res 99D: 1919–1926

    Article  Google Scholar 

  • Wohlfahrt G, Anfang C, Bahn M, Haslwanter A, Newesely C, Schmitt M, Drosler M, Pfadenhauer J and Cernusca A (2005). Quantifying nighttime ecosystem respiration of a meadow using eddy covariance, chambers and modelling. Agric For Meteorol 128: 141–162

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monique Y. Leclerc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prabha, T.V., Leclerc, M.Y., Karipot, A. et al. Influence of Nocturnal Low-level Jets on Eddy-covariance Fluxes over a Tall Forest Canopy. Boundary-Layer Meteorol 126, 219–236 (2008). https://doi.org/10.1007/s10546-007-9232-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-007-9232-3

Keywords

Navigation