Skip to main content

Advertisement

Log in

A Vegetated Urban Canopy Model for Meteorological and Environmental Modelling

  • Original Paper
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

An urban canopy model is developed for use in mesoscale meteorological and environmental modelling. The urban geometry is composed of simple homogeneous buildings characterized by the canyon aspect ratio (h/w) as well as the canyon vegetation characterized by the leaf aspect ratio (σ l ) and leaf area density profile. Five energy exchanging surfaces (roof, wall, road, leaf, soil) are considered in the model, and energy conservation relations are applied to each component. In addition, the temperature and specific humidity of canopy air are predicted without the assumption of thermal equilibrium. For radiative transfer within the canyon, multiple reflections for shortwave radiation and one reflection for longwave radiation are considered, while the shadowing and absorption of radiation due to the canyon vegetation are computed by using the transmissivity and the leaf area density profile function. The model is evaluated using field measurements in Vancouver, British Columbia and Marseille, France. Results show that the model quite well simulates the observations of surface temperatures, canopy air temperature and specific humidity, momentum flux, net radiation, and energy partitioning into turbulent fluxes and storage heat flux. Sensitivity tests show that the canyon vegetation has a large influence not only on surface temperatures but also on the partitioning of sensible and latent heat fluxes. In addition, the surface energy balance can be affected by soil moisture content and leaf area index as well as the fraction of vegetation. These results suggest that a proper parameterization of the canyon vegetation is prerequisite for urban modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asaeda T, Ca VT and Wake A (1996). Heat storage of pavement and its effect on the lower atmosphere. Atmos Environ 30: 413–427

    Article  Google Scholar 

  • Atwater MA (1977). Urbanization and pollutant effects on the thermal structure in four climatic regimes. J Appl Meteorol 16: 888–895

    Article  Google Scholar 

  • Avissar R and Mahrer Y (1988). Mapping frost-sensitive areas with a three-dimensional local-scale numerical model. Part1:Physical and numerical aspects. J Appl Meteorol 27: 400–413

    Article  Google Scholar 

  • Avissar R and Pielke RA (1989). A parameterization of heterogeneous land surface for atmospheric numerical models and its impact on regional meteorology. Mon Wea Rev 117: 2113–2136

    Article  Google Scholar 

  • Beysens D (1995). The formation of dew. Atmos Res 39: 215–237

    Article  Google Scholar 

  • Brown MJ (2000) Urban parameterizations for mesoscale meteorological models. In: Boybey Z (ed) Mesoscale atmospheric dispersion. Wessex Press, p 448

  • Ca VT, Ashie Y and Asaeda T (2002). A κ–ɛ turbulence closure model for the atmospheric boundary layer including urban canopy. Boundary-Layer Meteorol 102: 459–490

    Article  Google Scholar 

  • Clapp RB and Hornberger GM (1978). Emperical equations for some soil hydraulic properties. Water Resour Res 14: 601–604

    Article  Google Scholar 

  • Deardorff JW (1978). Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation. J Geophys Res 83(C4): 1889–1903

    Google Scholar 

  • DePaul FT and Sheih CM (1986). Measurements of wind velocities in a street canyon. Atmos Environ 20: 455–459

    Article  Google Scholar 

  • Dickinson RE (1984). Modeling evapotranspiration for three-dimensional global climate models. In: Hansen, JE and Takahashi, T (eds) Climate processes and climate sensitivity. Geophysical Monographs, No. 29, pp 58–72. American Geophysical Union, Washington DC

    Google Scholar 

  • Dickinson RE, Henderson-Sellers A, Kennedy PJ, Wilson MF (1986) Biosphere-atmosphere transfer scheme for the NCAR community climate model. Technical Report NCAR/TN-275+STR, NCAR,

  • Dickinson RE, Shaikh M, Bryant R and Graumlich L (1998). Interactive canopies for a climate model. J Climate 11: 2823–2836

    Article  Google Scholar 

  • Dupont S, Otte TL and Ching JKS (2004). Simulation of meteorological fields within and above urban and rural canopies with a mesoscale model(MM5). Boundary-Layer Meteorol 113: 111–158

    Article  Google Scholar 

  • Eliasson I, Offerle B, Grimmond CSB and Lindqvist S (2006). Wind fields and turbulence statistics in an urban street canyon. Atmos Environ 40: 1–16

    Article  Google Scholar 

  • Feigenwinter C, Vogt R and Parlow E (1999). Vertical structure of selected turbulence characteristics above an urban canopy. Theor Appl Climatol 62: 51–63

    Article  Google Scholar 

  • Gandhidasan P and Abualhamayel HI (2005). Modeling and testing of a dew collection system. Desalination 180: 47–51

    Article  Google Scholar 

  • Garratt JR (1992). The atmospheric boundary layer. Cambridge University Press, U.K.,, 316 pp

    Google Scholar 

  • Grimmond CSB and Oke TR (2002). Turbulent heat fluxes in urban areas: observations and a local-scale urban meteorological parameterization scheme (LUMPS). J Appl Meteorol 41: 792–810

    Article  Google Scholar 

  • Hamdi R and Schayes G (2005). Validation of the Martilli’s urban boundary layer scheme with measurements from two mid-latitude European cities. Atmos Chem Phys Discuss 5: 4257–4289

    Article  Google Scholar 

  • Harman IN, Best MJ and Belcher SE (2004). Radiative exchange in an urban street canyon. Boundary-Layer Meteorol 110: 301–316

    Article  Google Scholar 

  • Hogstrom U (1988). Non-dimensional wind and temperature profiles in the atmospheric surface layer: a re-evaluation. Boundary-Layer Meteorol 42: 55–78

    Article  Google Scholar 

  • Holtslag AAM and DeBruin HAR (1988). Applied modeling of the nighttime surface energy balance over land. J Appl Meteorol 27: 689–704

    Article  Google Scholar 

  • Hoyano A (1988). Climatological uses of plants for solar control and the effects on the thermal environment of a building. Energy Buildings 11: 181–199

    Article  Google Scholar 

  • Hoydysh W and Dabbert WF (1988). Kinematics and dispersion characteristics of flows in asymmetric street canyons. Atmos Environ 22: 2677–2689

    Article  Google Scholar 

  • Hussain M and Lee BE (1980). A wind tunnel study of the mean pressure forces acting on large groups of low-rise buildings. J Wind Eng Ind Aerodyn 6: 207–225

    Article  Google Scholar 

  • Johnson GT, Oke TR, Lyons TJ, Steyn DG, Watson ID and Voogt JA (1991). Simulation of surface urban heat islands under ‘ideal’ conditions at night. Part 1: theory and tests against field data. Boundary-Layer Meteorol 56: 275–294

    Article  Google Scholar 

  • Kaimal JC and Finnigan JJ (1994). Atmospheric boundary layer flows. Oxford University Press, U.K.,, 289 pp

    Google Scholar 

  • Kastner-Klein P, Fedorovich E and Rotach M (2001). A wind tunnel study of organised and turbulent air motions in urban street canyons. J Wind Eng Ind Aerodyn 89: 849–861

    Article  Google Scholar 

  • Kjelgren R and Montague T (1998). Urban tree transpiration over turf and asphalt surfaces. Atmos Environ 32: 35–41

    Article  Google Scholar 

  • Knoerr KR and Gay LW (1965). Tree leaf energy balance. Ecology 46: 17–24

    Article  Google Scholar 

  • Kot SC and Song Y (1998). An improvement of the Louis scheme for the surface layer in an atmospheric modelling system. Boundary-Layer Meteorol 88: 239–254

    Article  Google Scholar 

  • Kusaka H, Kondo H, Kikegawa Y and Kimura F (2001). A simple single-layer urban canopy model for atmospheric models: comparison with multi-layer and slab models. Boundary-Layer Meteorol 101: 329–358

    Article  Google Scholar 

  • Lalic B and Mihailovic DT (2004). An empirical relation describing leaf-area density inside the forest for environmental modeling. J Appl Meteorol 43: 641–645

    Article  Google Scholar 

  • Lee TJ (1992) The impact of vegetation on the atmospheric boundary layer and convective stroms. Ph.D. thesis, Colorado State University

  • Lee TJ and Pielke RA (1992). Estimating the soil surface specific humidity. J Appl Meteorol 31: 480–484

    Article  Google Scholar 

  • Lemonsu A, Grimmond CSB and Masson V (2004). Modeling the surface energy balance of the core of an old mediterranean city: Marseille. J Appl Meteorol 43: 312–327

    Article  Google Scholar 

  • Louka P, Belcher SE and Harrison RG (2000). Coupling between air flow in streets and the well developed boundary layer aloft. Atmos Environ 34: 2613–2621

    Article  Google Scholar 

  • Macdonald RW (2000). Modelling the mean velocity profile in the urban canopy layer. Boundary-Layer Meteorol 97: 25–45

    Article  Google Scholar 

  • Madeira AC, Kim KS, Taylor SE and Gleason ML (2002). A simple cloud-based energy balance model to estimate dew. Agric For. Meteorol 111: 55–63

    Article  Google Scholar 

  • Martilli A, Clappier A and Rotach MW (2002). An urban surface exchange parameterisation for mesoscale models. Boundary-Layer Meteorol 104: 261–304

    Article  Google Scholar 

  • Masson V (2000). A physically-based scheme for the urban energy budget. Boundary-Layer Meteorol 94: 357–397

    Article  Google Scholar 

  • Mestayer PG, Durand P, Augustin P, Bastin S, Bonnefond J-M, Benech B, Campistron B, Coppalle A, Delbarre H, Dousset B, Drobinski P, Druilhet A, Frejafon E, Grimmond CSB, Groleau D, Irvine M, Kergomard C, Kermadi S, Lagouarde J-P, Lemonsu A, Lohou F, Long N, Masson V, Moppert C, Noilhan J, Offerle B, Oke TR, Pigeon G, Puygrenier V, Roberts S, Rosant J-M, Said F, Salmond J, Talbaut M and Voogt J (2005). The urban boundary-layer field campaign in Marseille(UBL/CLU-ESCOMPTE): set-up and first results. Boundary-Layer Meteorol 114: 315–365

    Article  Google Scholar 

  • Mihailovic DT and Rajikovic B (1992). Surface vegetation parameterization in atmospheric models: a numerical study. Meteor Z 41: 29–33

    Google Scholar 

  • Mills GM (1993). Simulation of the energy budget of an urban canyon-1. Model structure and sensitivity test. Atmos Environ 27B: 157–170

    Google Scholar 

  • Myrup L (1969). A numerical model of the urban heat island. J Appl Meteorol 8: 908–918

    Article  Google Scholar 

  • Nakamura Y and Oke T (1988). Wind, temperature and stability conditions in an east-west oriented urban canyon. Atmos Environ 22: 2691–2700

    Article  Google Scholar 

  • Noilhan J and Planton S (1989). A simple parameterization of land surface processes for meteorological models. Mon Wea Rev 117: 536–549

    Article  Google Scholar 

  • Nunez M and Oke TR (1976). Long-wave radiative flux divergence and nocturnal cooling of the urban atmosphere. Boundary-Layer Meteorol 10: 121–135

    Article  Google Scholar 

  • Nunez M and Oke TR (1977). The energy of an urban canyon. J Appl Meteorol 16: 11–19

    Article  Google Scholar 

  • Oke TR (1982). The energetic basis of the urban heat island. Quart J Roy Meteorol Soc 108: 1–24

    Google Scholar 

  • Oke T (1988). Street design and urban canopy layer climate. Energy and Buildings 11: 103–113

    Article  Google Scholar 

  • Oke TR and Cleugh HA (1987). Urban heat storage derived as energy balance residuals. Boundary-Layer Meteorol 39: 233–245

    Article  Google Scholar 

  • Oke TR, Steyn GJD and Watson I (1991). Simulation of surface urban heat islands under ideal conditions at night, Part2: diagnosis of causation. Boundary-Layer Meteorol 56: 339–358

    Article  Google Scholar 

  • Otte TL, Lacser A, Dupont S and Ching JKS (2004). Implementation of an urban canopy parameterization in a mesoscale meteorological model. J Appl Meteorol 43: 1648–1665

    Article  Google Scholar 

  • Park SU (1994). The effect of surface physical condition on the growth of the atmospheric boundary layer. J Korean Meteorol Soc 30(1): 119–134

    Google Scholar 

  • Park SU and Yoon IH (1991). Estimation of atmospheric boundary layer parameters using routinely available meteorological data. J Korean Meteorol Soc 27(1): 32–54

    Google Scholar 

  • Philip J (1957). Evaporation and moisture and heat fields in the soil. J Meteorol 14: 354–366

    Google Scholar 

  • Pigeon G, Lemonsu A, Long N, Barrie J, Masson V and Durand P (2006). Urban thermodynamic island in a coastal city analysed from an optimized surface network. Boundary-Layer Meteorol 120: 315–351

    Article  Google Scholar 

  • Richards K (2002). Hardware scale modelling of summertime patterns of urban dew and surface moisture in Vancouver, BC Canada. Atmos Res 64: 313–321

    Article  Google Scholar 

  • Robitu M, Musy M, Inard C and Groleau D (2006). Modeling the influence of vegetation and water pond on urban microclimate. Solar Energy 80: 435–447

    Article  Google Scholar 

  • Rotach MW (1993). Turbulence close to a rough urban surface. Part1: Reynolds stress. Boundary-Layer Meteorol 65: 1–28

    Article  Google Scholar 

  • Rotach MW (1995). Profiles of turbulence statistics in and above and urban street canyon. Atmos Environ 29: 1473–1486

    Article  Google Scholar 

  • Rowley FB, Algren AB and Blackshaw JL (1930). Surface conductances as affected by air velocity, temperature and character of surface. ASHRAE Trans 36: 429–446

    Google Scholar 

  • Santamouris M, Papanikolaou N, Koronakis I, Livada I and Asimakopoulos D (1999). Thermal and air flow characteristics in a deep pedestrain canyon under hot weather conditions. Atmos Environ 33: 4503–4521

    Article  Google Scholar 

  • Seaman NL, Ludwig FL, Donall EG, Warner TT and Bhumralker CM (1989). Numerical studies of urban planetry boundary-layer structure under realistic synoptic condition. J Appl Meteorol 28: 760–781

    Article  Google Scholar 

  • Sellers PJ, Mintz Y, Sud YC and Dalcher A (1986). A simple bioshpere model (SiB) for use within general circulation models. J Atmos Sci 43: 305–331

    Article  Google Scholar 

  • Sellers PJ, Randall DA, Collatz GJ, Berry JA, Field CB, Dazlich DA, Zhang C, Collelo GD and Bounoua L (1996). A revised land surface parameterization (SiB2) for atmospheric GCMs: Model formulation. J Climate 9: 676–705

    Article  Google Scholar 

  • Sini J, Anquetin S and Mestayer P (1996). Pollutant dispersion and thermal effects in urban street canyons. Atmos Environ 30: 2659–2677

    Article  Google Scholar 

  • Swaid H (1993). The role of radiative-convective interaction in creating the microclimate of urban street canyons. Boundary-Layer Meteorol 64: 231–259

    Article  Google Scholar 

  • Swinbank WC (1963). Long-wave radiation from clear skies. Quart J Roy Meteorol Soc 89: 339–348

    Article  Google Scholar 

  • Walko RL, Band LE, Baron J, Kittel TGF, Lammers R, Lee TJ, Ojima D, Pielke RA, Taylor C, Tague C, Tremback CJ and Vidale PL (2000). Coupled atmosphere-biophysics-hydrology models for environmental modeling. J Appl Meteorol 39: 931–944

    Article  Google Scholar 

  • Yamada T (1982). A numerical study of turbulent airflow in and above a forest canopy. J Meteorol Soc Japan 60: 439–454

    Google Scholar 

  • Yamartino RJ and Wiegand G (1986). Development and evaluation of simple models for the flow, turbulence and pollution concentration fields within an urban street canyon. Atmos Environ 20: 2137–2156

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon-Ung Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, SH., Park, SU. A Vegetated Urban Canopy Model for Meteorological and Environmental Modelling. Boundary-Layer Meteorol 126, 73–102 (2008). https://doi.org/10.1007/s10546-007-9221-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-007-9221-6

Keywords

Navigation