Skip to main content
Log in

Biosynthesis of glycosaminoglycans: associated disorders and biochemical tests

  • Review
  • Published:
Journal of Inherited Metabolic Disease

Abstract

Glycosaminoglycans (GAG) are long, unbranched heteropolymers with repeating disaccharide units that make up the carbohydrate moiety of proteoglycans. Six distinct classes of GAGs are recognized. Their synthesis follows one of three biosynthetic pathways, depending on the type of oligosaccharide linker they contain. Chondroitin sulfate, dermatan sulfate, heparan sulfate, and heparin sulfate contain a common tetrasaccharide linker that is O-linked to specific serine residues in core proteins. Keratan sulfate can contain three different linkers, either N-linked to asparagine or O-linked to serine/threonine residues in core proteins. Finally, hyaluronic acid does not contain a linker and is not covalently attached to a core protein. Most inborn errors of GAG biosynthesis are reported in small numbers of patients. To date, in 20 diseases, convincing evidence for pathogenicity has been presented for mutations in a total of 16 genes encoding glycosyltransferases, sulfotransferases, epimerases or transporters. GAG synthesis defects should be suspected in patients with a combination of characteristic clinical features in more than one connective tissue compartment: bone and cartilage (short long bones with or without scoliosis), ligaments (joint laxity/dislocations), and subepithelial (skin, sclerae). Some produce distinct clinical syndromes. The commonest laboratory tests used for this group of diseases are analysis of GAGs, enzyme assays, and molecular testing. In principle, GAG analysis has potential as a general first-line diagnostic test for GAG biosynthesis disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anower EKMF, Matsumoto K, Habuchi H et al (2013) Glycosaminoglycans in the blood of hereditary multiple exostoses patients: half reduction of heparan sulfate to chondroitin sulfate ratio and the possible diagnostic application. Glycobiology 23:865–876

    Article  CAS  Google Scholar 

  • Baasanjav S, Al-Gazali L, Hashiguchi T et al (2011) Faulty initiation of proteoglycan synthesis causes cardiac and joint defects. Am J Hum Genet 89:15–27

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Beighton P, Kozlowski K (1980) Spondylo-epi-metaphyseal dysplasia with joint laxity and severe, progressive kyphoscoliosis. Skelet Radiol 5:205–212

    Article  CAS  Google Scholar 

  • Berk DR, Bentley DD, Bayliss SJ, Lind A, Urban Z (2012) Cutis laxa: a review. J Am Acad Dermatol 66(842):e841–817

    Google Scholar 

  • Budde BS, Mizumoto S, Kogawa R et al (2015) Skeletal dysplasia in a consanguineous clan from the island of Nias/Indonesia is caused by a novel mutation in B3GAT3. Hum Genet 134:691–704

    Article  CAS  PubMed  Google Scholar 

  • Bui C, Huber C, Tuysuz B et al (2014) XYLT1 mutations in Desbuquois dysplasia type 2. Am J Hum Genet 94:405–414

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Camenisch TD, Schroeder JA, Bradley J, Klewer SE, McDonald JA (2002) Heart-valve mesenchyme formation is dependent on hyaluronan-augmented activation of ErbB2-ErbB3 receptors. Nat Med 8:850–855

    CAS  PubMed  Google Scholar 

  • Camenisch TD, Spicer AP, Brehm-Gibson T et al (2000) Disruption of hyaluronan synthase-2 abrogates normal cardiac morphogenesis and hyaluronan-mediated transformation of epithelium to mesenchyme. J Clin Invest 106:349–360

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cartault F, Munier P, Jacquemont ML et al (2015) Expanding the clinical spectrum of B4GALT7 deficiency: homozygous p.R270C mutation with founder effect causes Larsen of Reunion Island syndrome. Eur J Hum Genet 23:49–53

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cylwik B, Lipartowska K, Chrostek L, Gruszewska E (2013a) Congenital disorders of glycosylation. Part II. Defects of protein O-glycosylation. Acta Biochim Pol 60:361–368

    CAS  PubMed  Google Scholar 

  • Cylwik B, Naklicki M, Chrostek L, Gruszewska E (2013b) Congenital disorders of glycosylation. Part I. Defects of protein N-glycosylation. Acta Biochim Pol 60:151–161

    CAS  PubMed  Google Scholar 

  • Degroote S, Lo-Guidice JM, Strecker G, Ducourouble MP, Roussel P, Lamblin G (1997) Characterization of an N-acetylglucosamine-6-O-sulfotransferase from human respiratory mucosa active on mucin carbohydrate chains. J Biol Chem 272:29493–29501

    Article  CAS  PubMed  Google Scholar 

  • Dundar M, Muller T, Zhang Q et al (2009) Loss of dermatan-4-sulfotransferase 1 function results in adducted thumb-clubfoot syndrome. Am J Hum Genet 85:873–882

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Esko JD, Kimata K, Lindahl U (2009) Proteoglycans and sulfated glycosaminoglycans. In: Varki A, Cummings RD, Esko JD (eds) Essentials of glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Faiyaz ul Haque M, King LM, Krakow D et al (1998) Mutations in orthologous genes in human spondyloepimetaphyseal dysplasia and the brachymorphic mouse. Nat Genet 20:157–162

    Article  CAS  PubMed  Google Scholar 

  • Feng Y, Walsh CA (2004) The many faces of filamin: a versatile molecular scaffold for cell motility and signalling. Nat Cell Biol 6:1034–1038

    Article  CAS  PubMed  Google Scholar 

  • Forsberg E, Kjellen L (2001) Heparan sulfate: lessons from knockout mice. J Clin Invest 108:175–180

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Frederick JP, Tafari AT, Wu SM et al (2008) A role for a lithium-inhibited Golgi nucleotidase in skeletal development and sulfation. Proc Natl Acad Sci U S A 105:11605–11612

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Freeze HH, Schachter H (2009) Genetic disorders of glycosylation. In: Varki A, Cummings RD, Esko JD (eds). Essentials of glycobiology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

  • Funderburgh JL (2000) Keratan sulfate: structure, biosynthesis, and function. Glycobiology 10:951–958

    Article  CAS  PubMed  Google Scholar 

  • Funderburgh JL (2002) Keratan sulfate biosynthesis. IUBMB Life 54:187–194

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Furuichi T, Kayserili H, Hiraoka S et al (2009) Identification of loss-of-function mutations of SLC35D1 in patients with Schneckenbecken dysplasia, but not with other severe spondylodysplastic dysplasias group diseases. J Med Genet 46:562–568

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Goossens D, Van Gestel S, Claes S et al (2003) A novel CpG-associated brain-expressed candidate gene for chromosome 18q-linked bipolar disorder. Mol Psychiatry 8:83–89

    Article  CAS  PubMed  Google Scholar 

  • Gupta GS (2012) Animal lectins: form, function and clinical applications. Springer, Heidelberg

  • Halper J (2014) Proteoglycans and diseases of soft tissues. Adv Exp Med Biol 802:49–58

    Article  CAS  PubMed  Google Scholar 

  • Hassell JR, Newsome DA, Krachmer JH, Rodrigues MM (1980) Macular corneal dystrophy: failure to synthesize a mature keratan sulfate proteoglycan. Proc Natl Acad Sci U S A 77:3705–3709

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hermanns P, Unger S, Rossi A et al (2008) Congenital joint dislocations caused by carbohydrate sulfotransferase 3 deficiency in recessive Larsen syndrome and humero-spinal dysostosis. Am J Hum Genet 82:1368–1374

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hinsdale ME (2014) Xylosyltransferase I,II (XYLT1,2). In: Taniguchi N, Honke K, Fukuda M, Narimatsu H, Yamaguchi Y, Angata T (eds) Handbook of glycosyltransferases and related genes. Springer Japan, Tokyo pp 873–883

    Chapter  Google Scholar 

  • Hiraoka S, Furuichi T, Nishimura G et al (2007) Nucleotide-sugar transporter SLC35D1 is critical to chondroitin sulfate synthesis in cartilage and skeletal development in mouse and human. Nat Med 13:1363–1367

    Article  CAS  PubMed  Google Scholar 

  • Huegel J, Sgariglia F, Enomoto-Iwamoto M, Koyama E, Dormans JP, Pacifici M (2013) Heparan sulfate in skeletal development, growth, and pathology: the case of hereditary multiple exostoses. Dev Dyn: Off Publ Am Assoc Anatomists 242:1021–1032

    Article  CAS  Google Scholar 

  • Itano N, Kimata K (2002) Mammalian hyaluronan synthases. IUBMB Life 54:195–199

    Article  CAS  PubMed  Google Scholar 

  • Itano N, Sawai T, Yoshida M et al (1999) Three isoforms of mammalian hyaluronan synthases have distinct enzymatic properties. J Biol Chem 274:25085–25092

    Article  CAS  PubMed  Google Scholar 

  • Janecke AR, Li B, Boehm M et al (2015) The phenotype of the musculocontractural type of Ehlers-Danlos syndrome due to CHST14 mutations. Am J Med Genet Part A

  • Jones KB, Datar M, Ravichandran S et al (2013) Toward an understanding of the short bone phenotype associated with multiple osteochondromas. J Orthop Res: Off Publ Orthop Res Soc 31:651–657

    Article  Google Scholar 

  • Jones KL, Schwarze U, Adam MP, Byers PH, Mefford HC (2015) A homozygous B3GAT3 mutation causes a severe syndrome with multiple fractures, expanding the phenotype of linkeropathy syndromes. Am J Med Genet A 167:2691–2696

    Article  PubMed Central  CAS  Google Scholar 

  • Klintworth GK (2009) Corneal dystrophies. Orphanet J Rare Dis 4:7

    Article  PubMed Central  PubMed  Google Scholar 

  • Kobayashi N, Miyoshi S, Mikami T et al (2010) Hyaluronan deficiency in tumor stroma impairs macrophage trafficking and tumor neovascularization. Cancer Res 70:7073–7083

    Article  CAS  PubMed  Google Scholar 

  • Kronenberg HM (2003) Developmental regulation of the growth plate. Nature 423:332–336

    Article  CAS  PubMed  Google Scholar 

  • Kwok JC, Warren P, Fawcett JW (2012) Chondroitin sulfate: a key molecule in the brain matrix. Int J Biochem Cell Biol 44:582–586

    Article  CAS  PubMed  Google Scholar 

  • Laurent TC, Laurent UB, Fraser JR (1996) The structure and function of hyaluronan: an overview. Immunol Cell Biol 74:A1–A7

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Laue K, Temtamy S et al (2010) Temtamy preaxial brachydactyly syndrome is caused by loss-of-function mutations in chondroitin synthase 1, a potential target of BMP signaling. Am J Hum Genet 87:757–767

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Malfait F, Kariminejad A, Van Damme T et al (2013) Defective initiation of glycosaminoglycan synthesis due to B3GALT6 mutations causes a pleiotropic Ehlers-Danlos-syndrome-like connective tissue disorder. Am J Hum Genet 92:935–945

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Malmstrom A (1984) Biosynthesis of dermatan sulfate. II. Substrate specificity of the C-5 uronosyl epimerase. J Biol Chem 259:161–165

    CAS  PubMed  Google Scholar 

  • Malmstrom A, Bartolini B, Thelin MA, Pacheco B, Maccarana M (2012) Iduronic acid in chondroitin/dermatan sulfate: biosynthesis and biological function. J Histochem Cytochem: Off J Histochem Soc 60:916–925

    Article  CAS  Google Scholar 

  • McMahon FJ, Hopkins PJ, Xu J et al (1997) Linkage of bipolar affective disorder to chromosome 18 markers in a new pedigree series. Am J Hum Genet 61:1397–1404

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McQueen MB, Devlin B, Faraone SV et al (2005) Combined analysis from eleven linkage studies of bipolar disorder provides strong evidence of susceptibility loci on chromosomes 6q and 8q. Am J Hum Genet 77:582–595

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mikami T, Kitagawa H (2013) Biosynthesis and function of chondroitin sulfate. Biochim Biophys Acta 1830:4719–4733

    Article  CAS  PubMed  Google Scholar 

  • Miyake N, Elcioglu NH, Iida A et al (2012) PAPSS2 mutations cause autosomal recessive brachyolmia. J Med Genet 49:533–538

    Article  CAS  PubMed  Google Scholar 

  • Miyake N, Kosho T, Mizumoto S et al (2010) Loss-of-function mutations of CHST14 in a new type of Ehlers-Danlos syndrome. Hum Mutat 31:966–974

    Article  CAS  PubMed  Google Scholar 

  • Mizumoto S, Ikegawa S, Sugahara K (2013) Human genetic disorders caused by mutations in genes encoding biosynthetic enzymes for sulfated glycosaminoglycans. J Biol Chem 288:10953–10961

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mizumoto S, Yamada S, Sugahara K (2014) Human genetic disorders and knockout mice deficient in glycosaminoglycan. BioMed Res Int 2014:495764

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Muller T, Mizumoto S, Suresh I et al (2013) Loss of dermatan sulfate epimerase (DSE) function results in musculocontractural Ehlers-Danlos syndrome. Hum Mol Genet 22:3761–3772

    Article  PubMed  CAS  Google Scholar 

  • Munns CF, Fahiminiya S, Poudel N et al (2015) Homozygosity for frameshift mutations in XYLT2 result in a spondylo-ocular syndrome with bone fragility, cataracts, and hearing defects. Am J Hum Genet 96:971–978

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nadanaka S, Kitagawa H (2008) Heparan sulphate biosynthesis and disease. J Biochem 144:7–14

    Article  CAS  PubMed  Google Scholar 

  • Nader HB, Chavante SF, dos-Santos EA et al (1999) Heparan sulfates and heparins: similar compounds performing the same functions in vertebrates and invertebrates? Braz J Med Biol Res 32:529–538

    Article  CAS  PubMed  Google Scholar 

  • Nakajima M, Mizumoto S, Miyake N et al (2013) Mutations in B3GALT6, which encodes a glycosaminoglycan linker region enzyme, cause a spectrum of skeletal and connective tissue disorders. Am J Hum Genet 92:927–934

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Necas J, Bartosikova L, Brauner P, Kolar J (2008) Hyaluronic acid (hyaluronan): a review. Vet Med 53:397–411

    CAS  Google Scholar 

  • Nelson DL, Cox MM (2004) Lehninger principles of biochemistry, 4th edn. Freeman, New York

  • Nizon M, Alanay Y, Tuysuz B et al (2012) IMPAD1 mutations in two Catel-Manzke like patients. Am J Med Genet A 158A:2183–2187

    Article  PubMed  CAS  Google Scholar 

  • Noordam C, Dhir V, McNelis JC et al (2009) Inactivating PAPSS2 mutations in a patient with premature pubarche. N Engl J Med 360:2310–2318

    Article  CAS  PubMed  Google Scholar 

  • Nwulia EA, Miao K, Zandi PP, Mackinnon DF, DePaulo JR Jr, McInnis MG (2007) Genome-wide scan of bipolar II disorder. Bipolar Disord 9:580–588

    Article  CAS  PubMed  Google Scholar 

  • Oguma T, Tomatsu S, Montano AM, Okazaki O (2007) Analytical method for the determination of disaccharides derived from keratan, heparan, and dermatan sulfates in human serum and plasma by high-performance liquid chromatography/turbo ionspray ionization tandem mass spectrometry. Anal Biochem 368:79–86

    Article  CAS  PubMed  Google Scholar 

  • Plaas AH, West LA, Thonar EJ et al (2001) Altered fine structures of corneal and skeletal keratan sulfate and chondroitin/dermatan sulfate in macular corneal dystrophy. J Biol Chem 276:39788–39796

    Article  CAS  PubMed  Google Scholar 

  • Pomin VH (2014) Keratan sulfate: an up-to-date review. Int J Biol Macromol 72C:282–289

    Google Scholar 

  • Prydz K, Dalen KT (2000) Synthesis and sorting of proteoglycans. J Cell Sci 113(Pt 2):193–205

    CAS  PubMed  Google Scholar 

  • Quantock AJ, Young RD, Akama TO (2010) Structural and biochemical aspects of keratan sulphate in the cornea. Cell Mol Life Sci: CMLS 67:891–906

    Article  CAS  PubMed  Google Scholar 

  • Quentin E, Gladen A, Roden L, Kresse H (1990) A genetic defect in the biosynthesis of dermatan sulfate proteoglycan: galactosyltransferase I deficiency in fibroblasts from a patient with a progeroid syndrome. Proc Natl Acad Sci U S A 87:1342–1346

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rabenstein DL (2002) Heparin and heparan sulfate: structure and function. Nat Prod Rep 19:312–331

    Article  CAS  PubMed  Google Scholar 

  • Rajab A, Kunze J, Mundlos S (2004) Spondyloepiphyseal dysplasia Omani type: a new recessive type of SED with progressive spinal involvement. Am J Med Genet A 126A:413–419

    Article  CAS  PubMed  Google Scholar 

  • Rossi A, van der Harten HJ, Beemer FA et al (1996) Phenotypic and genotypic overlap between atelosteogenesis type 2 and diastrophic dysplasia. Hum Genet 98:657–661

    Article  CAS  PubMed  Google Scholar 

  • Saigoh K, Izumikawa T, Koike T, Shimizu J, Kitagawa H, Kusunoki S (2011) Chondroitin beta-1,4-N-acetylgalactosaminyltransferase-1 missense mutations are associated with neuropathies. J Hum Genet 56:143–146

    Article  CAS  PubMed  Google Scholar 

  • Sarrazin S, Lamanna WC, Esko JD (2011) Heparan sulfate proteoglycans. Cold Spring Harbor perspectives in biology 3

  • Schaefer L, Schaefer RM (2010) Proteoglycans: from structural compounds to signaling molecules. Cell Tissue Res 339:237–246

    Article  CAS  PubMed  Google Scholar 

  • Schmale GA, Conrad EU 3rd, Raskind WH (1994) The natural history of hereditary multiple exostoses. J Bone Joint Surg Am 76:986–992

    CAS  PubMed  Google Scholar 

  • Seidler DG, Breuer E, Grande-Allen KJ, Hascall VC, Kresse H (2002) Core protein dependence of epimerization of glucuronosyl residues in galactosaminoglycans. J Biol Chem 277:42409–42416

    Article  CAS  PubMed  Google Scholar 

  • Seidler DG, Faiyaz-Ul-Haque M, Hansen U et al (2006) Defective glycosylation of decorin and biglycan, altered collagen structure, and abnormal phenotype of the skin fibroblasts of an Ehlers-Danlos syndrome patient carrying the novel Arg270Cys substitution in galactosyltransferase I (beta4GalT-7). J Mol Med 84:583–594

    Article  CAS  PubMed  Google Scholar 

  • Sellars EA, Bosanko KA, Lepard T, Garnica A, Schaefer GB (2014) A newborn with complex skeletal abnormalities, joint contractures, and bilateral corneal clouding with sclerocornea. Semin Pediatr Neurol 21:84–87

    Article  PubMed  Google Scholar 

  • Sheng J, Xu Y, Dulaney SB, Huang X, Liu J (2012) Uncovering biphasic catalytic mode of C5-epimerase in heparan sulfate biosynthesis. J Biol Chem 287:20996–21002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shi J, Potash JB, Knowles JA et al (2011) Genome-wide association study of recurrent early-onset major depressive disorder. Mol Psychiatry 16:193–201

    Article  CAS  PubMed  Google Scholar 

  • Smith W, Ji HP, Mouradian W, Pagon RA (1999) Spondyloepimetaphyseal dysplasia with joint laxity (SEMDJL): presentation in two unrelated patients in the United States. Am J Med Genet 86:245–252

    Article  CAS  PubMed  Google Scholar 

  • Stern R (2009) Hyaluronan in cancer biology, Academic Press.

  • Sugahara K, Kitagawa H (2000) Recent advances in the study of the biosynthesis and functions of sulfated glycosaminoglycans. Curr Opin Struct Biol 10:518–527

    Article  CAS  PubMed  Google Scholar 

  • Sugahara K, Mikami T, Uyama T, Mizuguchi S, Nomura K, Kitagawa H (2003) Recent advances in the structural biology of chondroitin sulfate and dermatan sulfate. Curr Opin Struct Biol 13:612–620

    Article  CAS  PubMed  Google Scholar 

  • Superti-Furga A (2003) Skeletal dysplasias related to defects in sulfate metabolism. In: Royce PM, Steinmann B (ed) Connective tissue and its heritable disorders: molecular, genetic, and medical aspects, 2nd edn. Wiley-Liss, New York

  • Superti-Furga A, Hastbacka J, Wilcox WR et al (1996) Achondrogenesis type IB is caused by mutations in the diastrophic dysplasia sulphate transporter gene. Nat Genet 12:100–102

    Article  CAS  PubMed  Google Scholar 

  • Syx D, Van Damme T, Symoens S et al (2015) Genetic heterogeneity and clinical variability in musculocontractural Ehlers-Danlos syndrome caused by impaired dermatan sulfate biosynthesis. Hum Mutat 36:535–547

    Article  CAS  PubMed  Google Scholar 

  • Thelin MA, Bartolini B, Axelsson J et al (2013) Biological functions of iduronic acid in chondroitin/dermatan sulfate. FEBS J 280:2431–2446

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thiele H, Sakano M, Kitagawa H et al (2004) Loss of chondroitin 6-O-sulfotransferase-1 function results in severe human chondrodysplasia with progressive spinal involvement. Proc Natl Acad Sci U S A 101:10155–10160

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tian J, Ling L, Shboul M et al (2010) Loss of CHSY1, a secreted FRINGE enzyme, causes syndromic brachydactyly in humans via increased NOTCH signaling. Am J Hum Genet 87:768–778

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tian X, Azpurua J, Hine C et al (2013) High-molecular-mass hyaluronan mediates the cancer resistance of the naked mole rat. Nature 499:346–349

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tomatsu S, Shimada T, Mason RW et al (2014a) Assay for glycosaminoglycans by tandem mass spectrometry and its applications. J Anal Bioanal Tech 2014:006

    PubMed Central  PubMed  Google Scholar 

  • Tomatsu S, Shimada T, Mason RW et al (2014b) Establishment of glycosaminoglycan assays for mucopolysaccharidoses. Metabolites 4:655–679

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Toyoda H, Motoki K, Tanikawa M, Shinomiya K, Akiyama H, Imanari T (1991) Determination of human urinary hyaluronic acid, chondroitin sulphate and dermatan sulphate as their unsaturated disaccharides by high-performance liquid chromatography. J Chromatogr 565:141–148

    Article  CAS  PubMed  Google Scholar 

  • Trowbridge JM, Gallo RL (2002) Dermatan sulfate: new functions from an old glycosaminoglycan. Glycobiology 12:117R–125R

    Article  CAS  PubMed  Google Scholar 

  • Tuysuz B, Mizumoto S, Sugahara K, Celebi A, Mundlos S, Turkmen S (2009) Omani-type spondyloepiphyseal dysplasia with cardiac involvement caused by a missense mutation in CHST3. Clin Genet 75:375–383

    Article  CAS  PubMed  Google Scholar 

  • Uchimura K, Muramatsu H, Kadomatsu K et al (1998) Molecular cloning and characterization of an N-acetylglucosamine-6-O-sulfotransferase. J Biol Chem 273:22577–22583

    Article  CAS  PubMed  Google Scholar 

  • Unger S, Lausch E, Rossi A et al (2010) Phenotypic features of carbohydrate sulfotransferase 3 (CHST3) deficiency in 24 patients: congenital dislocations and vertebral changes as principal diagnostic features. Am J Med Genet A 152A:2543–2549

    Article  CAS  PubMed  Google Scholar 

  • Uyama T, Kitagawa H, Sugahara K (2007) Biosynthesis of glycosaminoglycans and proteoglycans. In: Kamerling JP (ed) Comprehensive glycoscience 1st edn. Elsevier Science, Amsterdam, p 79–102

  • van Roij MH, Mizumoto S, Yamada S et al (2008) Spondyloepiphyseal dysplasia, Omani type: further definition of the phenotype. Am J Med Genet A 146A:2376–2384

    Article  PubMed  CAS  Google Scholar 

  • Vigetti D, Karousou E, Viola M, Deleonibus S, De Luca G, Passi A (2014) Hyaluronan: biosynthesis and signaling. Biochim Biophys Acta 1840:2452–2459

    Article  CAS  PubMed  Google Scholar 

  • Vissers LE, Lausch E, Unger S et al (2011) Chondrodysplasia and abnormal joint development associated with mutations in IMPAD1, encoding the Golgi-resident nucleotide phosphatase, gPAPP. Am J Hum Genet 88:608–615

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • von Oettingen JE, Tan WH, Dauber A (2014) Skeletal dysplasia, global developmental delay, and multiple congenital anomalies in a 5-year-old boy-report of the second family with B3GAT3 mutation and expansion of the phenotype. Am J Med Genet A 164A:1580–1586

    Article  CAS  Google Scholar 

  • Weiss JS, Moller HU, Aldave AJ et al (2015) IC3D Classification of corneal dystrophies-edition 2. Cornea 34:117–159

    Article  PubMed  Google Scholar 

  • Yoshida A, Kobayashi K, Manya H et al (2001) Muscular dystrophy and neuronal migration disorder caused by mutations in a glycosyltransferase, POMGnT1. Dev Cell 1:717–724

    Article  CAS  PubMed  Google Scholar 

  • Zayed H, Chao R, Moshrefi A et al (2010) A maternally inherited chromosome 18q22.1 deletion in a male with late-presenting diaphragmatic hernia and microphthalmia-evaluation of DSEL as a candidate gene for the diaphragmatic defect. Am J Med Genet A 152A:916–923

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang H, Wood T, Young SP, Millington DS (2015) A straightforward, quantitative ultra-performance liquid chromatography-tandem mass spectrometric method for heparan sulfate, dermatan sulfate and chondroitin sulfate in urine: an improved clinical screening test for the mucopolysaccharidoses. Mol Genet Metab 114:123–128

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, David G, Esko JD (1995) Repetitive Ser-Gly sequences enhance heparan sulfate assembly in proteoglycans. J Biol Chem 270:27127–27135

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Esko JD (1994) Amino acid determinants that drive heparan sulfate assembly in a proteoglycan. J Biol Chem 269:19295–19299

    CAS  PubMed  Google Scholar 

  • Zhu X, Deng X, Huang G et al (2014) A novel mutation of Hyaluronan synthase 2 gene in Chinese children with ventricular septal defect. PLoS One 9, e87437

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Funding

Florin Sasarman has the following financial relationship to disclose: Fellowship grant from Genzyme Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Allard.

Ethics declarations

Conflict of interest

None.

Human and animal rights and informed consent

This article does not contain studies with human or animal subjects performed by any of the authors.

Additional information

Communicated by: Ron A Wevers

Florin Sasarman and Catalina Maftei contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

Comprehensive listing of clinical features in GAG biosynthetic defects. (DOCX 135 kb)

Supplementary Table 2

Differential diagnoses of GAG biosynthetic defects. (DOCX 24 kb)

Supplementary Table 3

Biochemical tests used for analysis of GAGs in fibroblasts, urine or blood in human samples. Rows illustrate different methods of analysis, and are grouped into the four categories described in the text. Columns show individual GAGs and enzymatic activities of GAG biosynthesis. Within each column, the specific enzymatic deficient samples studied are indicated, and the corresponding reference is identified in the rightmost column. The type of GAG detected with each method is indicated by an “x” mark in the respective column. (DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sasarman, F., Maftei, C., Campeau, P.M. et al. Biosynthesis of glycosaminoglycans: associated disorders and biochemical tests. J Inherit Metab Dis 39, 173–188 (2016). https://doi.org/10.1007/s10545-015-9903-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-015-9903-z

Keywords

Navigation