Skip to main content

Advertisement

Log in

Skeletal dysplasia in a consanguineous clan from the island of Nias/Indonesia is caused by a novel mutation in B3GAT3

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

We describe a large family with disproportionate short stature and bone dysplasia from Nias in which we observed differences in severity when comparing the phenotypes of affected individuals from two remote branches. We conducted a linkage scan in the more severely affected family branch and determined a critical interval of 4.7 cM on chromosome 11. Sequencing of the primary candidate gene TBX10 did not reveal a disease-causing variant. When performing whole exome sequencing we noticed a homozygous missense variant in B3GAT3, c.419C>T [p.(Pro140Leu)]. B3GAT3 encodes β-1,3-glucuronyltransferase-I (GlcAT-I). GlcAT-I catalyzes an initial step of proteoglycan synthesis and the mutation p. (Pro140Leu) lies within the donor substrate-binding subdomain of the catalytic domain. In contrast to the previously published mutation in B3GAT3, c.830G>A [p.(Arg277Gln)], no heart phenotype could be detected in our family. Functional studies revealed a markedly reduced GlcAT-I activity in lymphoblastoid cells from patients when compared to matched controls. Moreover, relative numbers of glycosaminoglycan (GAG) side chains were decreased in patient cells. We found that Pro140Leu-mutant GlcAT-I cannot efficiently transfer GlcA to the linker region trisaccharide. This failure results in a partial deficiency of both chondroitin sulfate and heparan sulfate chains. Since the phenotype of the Nias patients differs from the Larsen-like syndrome described for patients with mutation p.(Arg277Gln), we suggest mutation B3GAT3:p.(Pro140Leu) to cause a different type of GAG linkeropathy showing no involvement of the heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR (2010) A method and server for predicting damaging missense mutations. Nat Methods 7:248–249. doi:10.1038/nmeth0410-248

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Almeida R, Levery SB, Mandel U, Kresse H, Schwientek T, Bennett EP, Clausen H (1999) Cloning and expression of a proteoglycan UDP-galactose: beta-xylose beta1,4-galactosyltransferase I. A seventh member of the human beta4-galactosyltransferase gene family. J Biol Chem 274:26165–26171

    Article  CAS  PubMed  Google Scholar 

  • Baasanjav S, Al-Gazali L, Hashiguchi T, Mizumoto S, Fischer B, Horn D, Seelow D, Ali BR, Aziz SAA, Langer R, Saleh AAH, Becker C, Nurnberg G, Cantagrel V, Gleeson JG, Gomez D, Michel JB, Stricker S, Lindner TH, Nurnberg P, Sugahara K, Mundlos S, Hoffmann K (2011) Faulty initiation of proteoglycan synthesis causes cardiac and joint defects. Am J Human Genet 89:15–27

    Article  CAS  Google Scholar 

  • Bai X, Zhou D, Brown JR, Crawford BE, Hennet T, Esko JD (2001) Biosynthesis of the linkage region of glycosaminoglycans: cloning and activity of galactosyltransferase II, the sixth member of the beta 1,3-galactosyltransferase family (beta 3GalT6). J Biol Chem 276:48189–48195. doi:10.1074/jbc.M107339200

    CAS  PubMed  Google Scholar 

  • Bui C, Huber C, Tuysuz B, Alanay Y, Bole-Feysot C, Leroy JG, Mortier G, Nitschke P, Munnich A, Cormier-Daire V (2014) XYLT1 mutations in Desbuquois dysplasia type 2. Am J Hum Genet 94:405–414. doi:10.1016/j.ajhg.2014.01.020

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cartault F, Munier P, Jacquemont ML, Vellayoudom J, Doray B, Payet C, Randrianaivo H, Laville JM, Munnich A, Cormier-Daire V (2014) Expanding the clinical spectrum of B4GALT7 deficiency: homozygous p.R270C mutation with founder effect causes Larsen of Reunion Island syndrome. Eur J Hum Genet. doi:10.1038/ejhg.2014.60

  • Dick G, Akslen-Hoel LK, Grondahl F, Kjos I, Prydz K (2012) Proteoglycan synthesis and Golgi organization in polarized epithelial cells. J Histochem Cytochem 60:926–935. doi:10.1369/0022155412461256

    Article  PubMed Central  PubMed  Google Scholar 

  • Faiyaz-Ul-Haque M, Zaidi SH, Al-Ali M, Al-Mureikhi MS, Kennedy S, Al-Thani G, Tsui LC, Teebi AS (2004) A novel missense mutation in the galactosyltransferase-I (B4GALT7) gene in a family exhibiting facioskeletal anomalies and Ehlers-Danlos syndrome resembling the progeroid type. Am J Med Genet A 128A:39–45. doi:10.1002/ajmg.a.30005

    Article  PubMed  Google Scholar 

  • Götting C, Kuhn J, Zahn R, Brinkmann T, Kleesiek K (2000) Molecular cloning and expression of human UDP-d-Xylose:proteoglycan core protein beta-d-xylosyltransferase and its first isoform XT-II. J Mol Biol 304:517–528. doi:10.1006/jmbi.2000.4261

    Article  PubMed  Google Scholar 

  • Guo MH, Stoler J, Lui J, Nilsson O, Bianchi DW, Hirschhorn JN, Dauber A (2013) Redefining the progeroid form of Ehlers–Danlos syndrome: report of the fourth patient with B4GALT7 deficiency and review of the literature. Am J Med Genet A 161:2519–2527. doi:10.1002/ajmg.a.36128

    CAS  PubMed Central  Google Scholar 

  • Hayes AJ, Mitchell RE, Bashford A, Reynolds S, Caterson B, Hammond CL (2013) Expression of glycosaminoglycan epitopes during zebrafish skeletogenesis. Dev Dyn 242:778–789. doi:10.1002/dvdy.23970

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hill C, Soares P, Mormina M, Macaulay V, Clarke D, Blumbach PB, Vizuete-Forster M, Forster P, Bulbeck D, Oppenheimer S, Richards M (2007) A mitochondrial stratigraphy for island southeast Asia. Am J Hum Genet 80:29–43. doi:10.1086/510412

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Holmborn K, Habicher J, Kasza Z, Eriksson AS, Filipek-Gorniok B, Gopal S, Couchman JR, Ahlberg PE, Wiweger M, Spillmann D, Kreuger J, Ledin J (2012) On the roles and regulation of chondroitin sulfate and heparan sulfate in zebrafish pharyngeal cartilage morphogenesis. J Biol Chem 287:33905–33916. doi:10.1074/jbc.M112.401646

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Iozzo RV (1998) Matrix proteoglycans: from molecular design to cellular function. Annu Rev Biochem 67:609–652. doi:10.1146/annurev.biochem.67.1.609

    Article  CAS  PubMed  Google Scholar 

  • Kennerknecht I, Hämmerle JM, Blench RM (2012) The peopling of Nias, from the perspective of oral literature and molecular genetic data. In: Tjoa-Bonatz ML, Reinecke A, Bonatz D (eds) Crossing borders: selected papers from the 13th international conference of the European Association of Southeast Asian archaeologists, vol 2. National University of Singapore Press, Singapore, pp 3–15

    Google Scholar 

  • Kitagawa H, Tone Y, Tamura J, Neumann KW, Ogawa T, Oka S, Kawasaki T, Sugahara K (1998) Molecular cloning and expression of glucuronyltransferase I involved in the biosynthesis of the glycosaminoglycan-protein linkage region of proteoglycans. J Biol Chem 273:6615–6618

    Article  CAS  PubMed  Google Scholar 

  • Kresse H, Rosthoj S, Quentin E, Hollmann J, Glossl J, Okada S, Tonnesen T (1987) Glycosaminoglycan-free small proteoglycan core protein is secreted by fibroblasts from a patient with a syndrome resembling progeroid. Am J Hum Genet 41:436–453

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kruglyak L, Daly MJ, Reeve-Daly MP, Lander ES (1996) Parametric and nonparametric linkage analysis: a unified multipoint approach. Am J Hum Genet 58:1347–1363

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kumar P, Henikoff S, Ng PC (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 4:1073–1081. doi:10.1038/nprot.2009.86

    Article  CAS  PubMed  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760. doi:10.1093/bioinformatics/btp324

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Malfait F, Kariminejad A, Van Damme T, Gauche C, Syx D, Merhi-Soussi F, Gulberti S, Symoens S, Vanhauwaert S, Willaert A, Bozorgmehr B, Kariminejad MH, Ebrahimiadib N, Hausser I, Huysseune A, Fournel-Gigleux S, De Paepe A (2013) Defective initiation of glycosaminoglycan synthesis due to B3GALT6 mutations causes a pleiotropic Ehlers–Danlos-syndrome-like connective tissue disorder. Am J Hum Genet 92:935–945. doi:10.1016/j.ajhg.2013.04.016

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McCoy JP Jr (2001) Handling, storage, and preparation of human blood cells. Curr Protoc Cytom, chapter 5: unit 5.1. doi:10.1002/0471142956.cy0501s00

  • McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303. doi:10.1101/gr.107524.110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mizumoto S, Sugahara K (2012) Glycosaminoglycan chain analysis and characterization (glycosylation/epimerization). Methods Mol Biol 836:99–115. doi:10.1007/978-1-61779-498-8_7

    CAS  PubMed  Google Scholar 

  • Mizumoto S, Ikegawa S, Sugahara K (2013) Human genetic disorders caused by mutations in genes encoding biosynthetic enzymes for sulfated glycosaminoglycans. J Biol Chem 288:10953–10961. doi:10.1074/jbc.R112.437038

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mukhopadhyay N, Almasy L, Schroeder M, Mulvihill WP, Weeks DE (2005) Mega2: data-handling for facilitating genetic linkage and association analyses. Bioinformatics 21:2556–2557. doi:10.1093/bioinformatics/bti364

    Article  CAS  PubMed  Google Scholar 

  • Nakajima M, Mizumoto S, Miyake N, Kogawa R, Iida A, Ito H, Kitoh H, Hirayama A, Mitsubuchi H, Miyazaki O, Kosaki R, Horikawa R, Lai A, Mendoza-Londono R, Dupuis L, Chitayat D, Howard A, Leal GF, Cavalcanti D, Tsurusaki Y, Saitsu H, Watanabe S, Lausch E, Unger S, Bonafe L, Ohashi H, Superti-Furga A, Matsumoto N, Sugahara K, Nishimura G, Ikegawa S (2013) Mutations in B3GALT6, which encodes a glycosaminoglycan linker region enzyme, cause a spectrum of skeletal and connective tissue disorders. Am J Hum Genet 92:927–934. doi:10.1016/j.ajhg.2013.04.003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Neitzel H (1986) A routine method for the establishment of permanent growing lymphoblastoid cell lines. Hum Genet 73:320–326

    Article  CAS  PubMed  Google Scholar 

  • Okajima T, Yoshida K, Kondo T, Furukawa K (1999) Human homolog of Caenorhabditis elegans sqv-3 gene is galactosyltransferase I involved in the biosynthesis of the glycosaminoglycan-protein linkage region of proteoglycans. J Biol Chem 274:22915–22918

    Article  CAS  PubMed  Google Scholar 

  • Oota H, Kitano T, Jin F, Yuasa I, Wang L, Ueda S, Saitou N, Stoneking M (2002) Extreme mtDNA homogeneity in continental Asian populations. Am J Phys Anthropol 118:146–153. doi:10.1002/ajpa.10056

    Article  PubMed  Google Scholar 

  • Ouzzine M, Gulberti S, Levoin N, Netter P, Magdalou J, Fournel-Gigleux S (2002) The donor substrate specificity of the human beta 1,3-glucuronosyltransferase I toward UDP-glucuronic acid is determined by two crucial histidine and arginine residues. J Biol Chem 277:25439–25445. doi:10.1074/jbc.M201912200

    Article  CAS  PubMed  Google Scholar 

  • Pedersen LC, Tsuchida K, Kitagawa H, Sugahara K, Darden TA, Negishi M (2000) Heparan/chondroitin sulfate biosynthesis—structure and mechanism of human glucuronyltransferase I. J Biol Chem 275:34580–34585. doi:10.1074/jbc.M007399200

    Article  CAS  PubMed  Google Scholar 

  • Pedersen LC, Darden TA, Negishi M (2002) Crystal structure of beta 1,3-glucuronyltransferase I in complex with active donor substrate UDP-GlcUA. J Biol Chem 277:21869–21873. doi:10.1074/jbc.M112343200

    Article  CAS  PubMed  Google Scholar 

  • Petrovski S, Wang Q, Heinzen EL, Allen AS, Goldstein DB (2013) Genic intolerance to functional variation and the interpretation of personal genomes. PLoS Genet 9:e1003709. doi:10.1371/journal.pgen.1003709

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ponighaus C, Ambrosius M, Casanova JC, Prante C, Kuhn J, Esko JD, Kleesiek K, Gotting C (2007) Human xylosyltransferase II is involved in the biosynthesis of the uniform tetrasaccharide linkage region in chondroitin sulfate and heparan sulfate proteoglycans. J Biol Chem 282:5201–5206. doi:10.1074/jbc.M611665200

    Article  PubMed  Google Scholar 

  • Quentin E, Gladen A, Roden L, Kresse H (1990) A genetic defect in the biosynthesis of dermatan sulfate proteoglycan: galactosyltransferase I deficiency in fibroblasts from a patient with a progeroid syndrome. Proc Natl Acad Sci USA 87:1342–1346

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ruschendorf F, Nurnberg P (2005) ALOHOMORA: a tool for linkage analysis using 10 K SNP array data. Bioinformatics 21:2123–2125

    Article  PubMed  Google Scholar 

  • Schreml J, Durmaz B, Cogulu O, Keupp K, Beleggia F, Pohl E, Milz E, Coker M, Ucar SK, Nurnberg G, Nurnberg P, Kuhn J, Ozkinay F (2013) The missing “link”: an autosomal recessive short stature syndrome caused by a hypofunctional XYLT1 mutation. Hum Genet. doi:10.1007/s00439-013-1351-y

    PubMed  Google Scholar 

  • Sobel E, Lange K (1996) Descent graphs in pedigree analysis: applications to haplotyping, location scores, and marker-sharing statistics. Am J Hum Genet 58:1323–1337

    CAS  PubMed Central  PubMed  Google Scholar 

  • Strauch K, Fimmers R, Kurz T, Deichmann KA, Wienker TF, Baur MP (2000) Parametric and nonparametric multipoint linkage analysis with imprinting and two-locus-trait models: application to mite sensitization. Am J Hum Genet 66:1945–1957

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sugahara K, Kitagawa H (2000) Recent advances in the study of the biosynthesis and functions of sulfated glycosaminoglycans. Curr Opin Struct Biol 10:518–527

    Article  CAS  PubMed  Google Scholar 

  • Thiele H, Nurnberg P (2005) HaploPainter: a tool for drawing pedigrees with complex haplotypes. Bioinformatics 21:1730–1732

    Article  CAS  PubMed  Google Scholar 

  • Tone Y, Kitagawa H, Imiya K, Oka S, Kawasaki T, Sugahara K (1999) Characterization of recombinant human glucuronyltransferase I involved in the biosynthesis of the glycosaminoglycan-protein linkage region of proteoglycans. FEBS Lett 459:415–420

    Article  CAS  PubMed  Google Scholar 

  • Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3–new capabilities and interfaces. Nucleic Acids Res 40:e115

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • van Oven M, Hammerle JM, van Schoor M, Kushnick G, Pennekamp P, Zega I, Lao O, Brown L, Kennerknecht I, Kayser M (2011) Unexpected Island Effects at an Extreme: reduced Y Chromosome and Mitochondrial DNA Diversity in Nias. Mol Biol Evol 28:1349–1361

    Article  PubMed  Google Scholar 

  • von Oettingen JE, Tan WH, Dauber A (2014) Skeletal dysplasia, global developmental delay, and multiple congenital anomalies in a 5-year-old boy-Report of the second family with B3GAT3 mutation and expansion of the phenotype. Am J Med Genet A 164:1580–1586. doi:10.1002/ajmg.a.36487

    Article  Google Scholar 

  • Vorster AA, Beighton P, Ramesar RS (2014) Spondyloepimetaphyseal dysplasia with joint laxity (Beighton type); mutation analysis in eight affected South African families. Clin Genet. doi:10.1111/cge.12413

    PubMed  Google Scholar 

  • Yeo G, Burge CB (2004) Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J Comput Biol 11:377–394. doi:10.1089/1066527041410418

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We want to thank Sr. Klara Duha OSF, Asrama Fa’omasi, Laverna, Gunungsitoli for their assistance when performing clinical examinations. The help of the family Gaho from Hilinamöza’ua and the family Duha from Bawödobara with sampling and Gert W. Widmann from Kempten with transporting the probes is highly appreciated. Nata’alui Duha, Fabius Ndruru, Hatima Farasi, Oktoberlina Telaumbanua and Arozanolo Gulö from the staff of the Museum Pusaka Nias did a great job in their administrative and secretarial support of the field research. We thank Elisabeth Kirst and Nina Dalibor for their technical assistance in the genetic analyses, and Takako Hayashi for her technical assistance in the quantitative analysis of GAGs. This work was supported in part by a Grant-in-aid for Challenging Exploratory Research 25670018 (to K. S.); by a Grant-in-aid for Young Scientists (B) 25860037 (to S. M.) from the Japan Society for the Promotion of Science, Japan; by the Drs. Hiroshi Irisawa and Aya Irisawa Memorial Research Grant from the Japan Heart Foundation (to S. M.); by the Research Institute of Meijo University (Tenkai) (to S. M.).

Conflict of interest

P.N. is a founder, CEO, and shareholder of ATLAS Biolabs GmbH. ATLAS Biolabs GmbH is a service provider for genomic analyses.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peter Nürnberg or Ingo Kennerknecht.

Additional information

B. S. Budde and S. Mizumoto contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1130 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Budde, B.S., Mizumoto, S., Kogawa, R. et al. Skeletal dysplasia in a consanguineous clan from the island of Nias/Indonesia is caused by a novel mutation in B3GAT3 . Hum Genet 134, 691–704 (2015). https://doi.org/10.1007/s00439-015-1549-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-015-1549-2

Keywords

Navigation