Skip to main content
Log in

The proteome of cblC defect: in vivo elucidation of altered cellular pathways in humans

  • Original Article
  • Published:
Journal of Inherited Metabolic Disease

Abstract

Methylmalonic acidemia with homocystinuria, cobalamin deficiency type C (cblC) (MMACHC) is the most common inborn error of cobalamin metabolism. Despite a multidrug treatment, the long-term follow-up of early-onset patients is often unsatisfactory, with progression of neurological and ocular impairment. Here, the in-vivo proteome of control and MMACHC lymphocytes (obtained from patients under standard treatment with OHCbl, betaine, folate and L-carnitine) was quantitatively examined by two dimensional differential in-gel electrophoresis (2D-DIGE) and mass spectrometry. Twenty three proteins were found up-regulated and 38 proteins were down-regulated. Consistent with in vivo studies showing disturbance of glutathione metabolism, a deregulation in proteins involved in cellular detoxification, especially in glutathione metabolism was found. In addition, relevant changes were observed in the expression levels of proteins involved in intracellular trafficking and protein folding, energy metabolism, cytoskeleton organization and assembly. This study demonstrates relevant changes in the proteome profile of circulating lymphocytes isolated from treated cblC patients. Some results confirm previous observations in vivo on fibroblast, thus concluding that some dysregulation is ubiquitous. On the other hand, new findings could be tissue-specific. These observations expand our current understanding of the cblC disease and may ignite new research and therapeutic strategies to treat this disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AdoCbl:

adenosylcobalamin

cblC:

cobalamin deficiency type C

MS:

mass spectrometry

meCbl:

methylcobalamin

MMACHC:

Methylmalonicaciduria with homocystinuria type C

OHCbl:

hydroxicobalamin

2D-DIGE:

two dimensional differential in-gel electrophoresis

References

  • Auluck PK, Bonini NM (2002) Pharmacological prevention of Parkinson disease in Drosophila. Nat Med 8:1185–1186

    Article  CAS  PubMed  Google Scholar 

  • Benham AM (2012) The protein disulfide isomerase family: key players in health and disease. Antioxid Redox Signal 16:781–789

    Article  CAS  PubMed  Google Scholar 

  • Buster DW, Baird DH, Yu W et al (2003) Expression of the mitotic kinesin Kif15 in postmitotic neurons: implications for neuronal migration and development. J Neurocytol 32:79–96

    Article  CAS  PubMed  Google Scholar 

  • Carrozzo R, Dionisi-Vici C, Steuerwald U et al (2007) SUCLA2 mutations are associated with mild methylmalonicaciduria, Leigh-like encephalomyopathy, dystonia and deafness. Brain 130:862–874

    Article  PubMed  Google Scholar 

  • Caterino M, Ruoppolo M, Fulcoli G et al (2009) Transcription factor TBX1 overexpression induces downregulation of proteins involved in retinoic acid metabolism: A comparative proteomic analysis. J Proteome Res 8:1515–1526

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Caterino M, Corbo C, Imperlini E et al (2013) Differential proteomic analysis in human cells subjected to ribosomal stress. Proteomics 13:1220–1227

    Article  CAS  PubMed  Google Scholar 

  • Filipowicz HR, Ernst SL, Ashurst CL et al (2006) Metabolic changes associated with hyperammonemia in patients with propionic acidemia. Mol Genet Metab 88:123–130

    Article  CAS  PubMed  Google Scholar 

  • Fischer S, Huemer M, Baumgartner M et al (2014) Clinical presentation and outcome in a series of 88 patients with the cblC defect. J Inherit Metab Dis doi:10.1007/s10545-014-9687-6

  • Froese DS, Zhang J, Healy S et al (2009) Mechanism of vitamin B12-responsiveness in cblCmethylmalonicaciduria with homocystinuria. Mol Genet Metab 98(4):338–343

    Article  CAS  PubMed  Google Scholar 

  • Gerke V, Creutz CE, Moss SE (2005) Annexins: Linking Ca2+ signalling to membrane dynamics. Nat Rev Mol Cell Biol 6:449–461

    Article  CAS  PubMed  Google Scholar 

  • Gibson GE, Park LC, Sheu KF et al (2000) The alpha-ketoglutarate dehydrogenase complex in neurodegeneration. Neurochem Int 36:97–112

    Article  CAS  PubMed  Google Scholar 

  • Hall PA, Russell SE (2004) The pathobiology of the septin gene family. J Pathol 489-505

  • Hannibal L, Kim J, Brasch NE et al (2009) Processing of alkylcobalamins in mammalian cells: a role for the MMACHC (cblC) gene product. Mol Genet Metab 97:260–266

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hannibal L, DiBello P, Yu M et al (2011) The MMACHC proteome: Hallmarks of functional cobalamin deficiency in humans. Mol Genet Metab 103:226–239

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim J, Gherasim C, Banerje R (2008) Decyanation of vitamin B12 by a trafficking chaperone. Proc Natl Acad Sci USA 105:14551–14554

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kostin S, Hein S, Arnon E et al (2000) The cytoskeleton and related proteins in the human failing heart. Heart Fail Rev 5:271–280

    Article  CAS  PubMed  Google Scholar 

  • Kunishima S, Okuno Y, Yoshida K et al (2013) ACTN1 mutations cause congenital macrothrombocytopenia. Am J Hum Genet 92:431–438

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Le A, Cooper CR, Gouw AM et al (2010) Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc Natl Acad Sci USA 107:2037–2042

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lerner-Ellis JP, Tirone JC, Pawelek PD et al (2006) Identification of the gene responsible for methylmalonicaciduria and homocystinuria, cblC type. Nat Genet 38:93–100

    Article  CAS  PubMed  Google Scholar 

  • Martinelli D, Dotta A, Massella L et al (2011a) Cobalamin C defect presenting as severe neonatal hyperammonemia. Eur J Pediatr 170:887–890

    Article  CAS  PubMed  Google Scholar 

  • Martinelli G, Deodato F, Dionisi-Vici C (2011b) Cobalamin C defect: natural history, pathophysiology, and treatment. J Inherit Metab Dis 34:127–135

    Article  CAS  PubMed  Google Scholar 

  • Matos IV, Castejón E, Meavilla S et al (2013) Clinical and biochemical outcome after hydroxocobalamin dose escalation in a series of patients with cobalamin C deficiency. Mol Genet Metab 109:360–365

    Article  CAS  PubMed  Google Scholar 

  • Menon D, Board PG (2013) A role of glutathione transferase Omega 1 (GSTO1-1) in the glutathionylation cycle. J Biol Chem 288:25769–25779

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mitchell GA, Watkins D, Melançon SB (1986) Clinical heterogeneity in cobalamin C variant of combined homocystinuria and methylmalonicaciduria. J Pediatr 108:410–415

    Article  CAS  PubMed  Google Scholar 

  • Morel CF, Lerner-Ellis JP, Rosenblatt DS (2006) Combined methylmalonicaciduria and homocystinuria (cblC): phenotype-genotype correlations and ethnic-specific observations. Mol Genet Metab 88:315–321

    Article  CAS  PubMed  Google Scholar 

  • Pastore A, Massoud R, Motti C et al (1998) Fully automated assay for total homocysteine, cysteine, cysteinylglycine, glutathione, cysteamine, and 2-mercaptopropionylglycine in plasma and urine. Clin Chem 44:825–832

    CAS  PubMed  Google Scholar 

  • Pastore A, Martinelli D, Piemonte F et al (2014) Glutathione metabolism in cobalamin deficiency type C (cblC). J Inherit Metab Dis 37:125–129

    Article  CAS  PubMed  Google Scholar 

  • Perl A, Hanczko R, Telarico T et al (2011) Oxidative stress, inflammation and carcinogenesis are controlled through the pentose phosphate pathway by transaldolase. Trends Mol Med 17:395–403

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Raynal P, Pollard HB (1994) Annexins: the problem of assessing the biological role for a gene family of multifunctional calcium- and phospholipid-binding proteins. Biochim Biophys Acta 1197:63–93

    Article  CAS  PubMed  Google Scholar 

  • Ricci D, Pane M, Deodato F (2005) Assessment of visual function in children with methylmalonicaciduria and homocystinuria. Neuropediatrics 36:181–185

    Article  CAS  PubMed  Google Scholar 

  • Rutter J, Winge DR, Schiffman JD (2010) Succinate dehydrogenase- Assembly, regulation and role in human disease. Mitochondrion 10:393–401

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Simmons D (2008) Epigenetic influence and disease. Nature Edu 1:6

  • Stanley CA, Lieu YK, Hsu BY (1998) Hyperinsulinism and hyperammonemia in infants with regulatory mutations of the glutamate dehydrogenase gene. N Engl J Med 338:1352–1357

    Article  CAS  PubMed  Google Scholar 

  • Tompkins MM, Hill WD (1997) Contribution of somalLewy bodies to neuronal death. Brain Res 775:24–29

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The financial support of the Mariani Foundation of Milan (Grant n. R-12-92), of the association “la Vita è unDono”, and of the Italian Ministry of Health (RicercaCorrente) are gratefully acknowledged. This work has been supported by POR Campania FSE 2007-2013 project CRÈME to MR.

Compliance with ethics guidelines

Conflict of interest

None.

Informed consent

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000. Informed consent was obtained from all patients for being included in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margherita Ruoppolo.

Additional information

Communicated by: Brian Fowler

Marianna Caterino and Anna Pastore equally contributed

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table 1S

Supplemental material. Details of tandem mass identification (XLS 33 kb)

Table 2S

Supplemental material. Details of ‘peptide mass fingerprint’ identification (XLS 73 kb)

Figure 1S

Supplemental material. 2D DIGEanalitical gels (GIF 382 kb)

High resolution image (TIFF 2572 kb)

Figure 2S

Supplemental material. IPA cluster of differentially expressed proteins in cblcpatients lymphocytes (GIF 160 kb)

High resolution image (TIFF 526 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caterino, M., Pastore, A., Strozziero, M.G. et al. The proteome of cblC defect: in vivo elucidation of altered cellular pathways in humans. J Inherit Metab Dis 38, 969–979 (2015). https://doi.org/10.1007/s10545-014-9806-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-014-9806-4

Keywords

Navigation