Skip to main content
Log in

Principles and practice of lipidomics

  • COMPLEX LIPIDS
  • Published:
Journal of Inherited Metabolic Disease

Abstract

The technical advances in mass spectrometry, particularly the development of (ultra)-high-resolution/mass accuracy measurement capabilities in combination with refinement of soft ionization techniques, have increased the application and success of lipidomics to answer biological questions in relation to lipid metabolism. Together with other omics technologies, lipidomics has become an important tool to practice systems biology as lipids comprise a very significant part of the metabolome and play pleiotropic roles in cellular functions. As an increasing number of disorders are linked to lipid metabolism, lipidomics is used to search for biomarkers, understand disease mechanism and follow the efficacy of therapeutic options. This review provides a first introduction to the major methodological strategies currently used for mass spectrometry-based lipidomics and associated data pre-processing and analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

APCI:

Atmospheric pressure chemical ionization

(D)FBA (Dynamic):

flux-balance analysis

ESI:

Electrospray ionization

FDR:

False discovery rate

FWHM:

Full width at half maximum

GSEA:

Gene set enrichment analysis

LC:

Liquid chromatography

MALDI:

Matrix-assisted laser desorption/ionization

MDMS:

Multi-dimensional MS

MSEA:

Metabolite set enrichment analysis

MRM:

Multiple reaction monitoring

PCA:

Principal component analysis

PLS-DA:

Partial-least-squares discriminant analysis

(U)HPLC:

(Ultra)-high performance chromatography

Q:

Quadrupole

QC:

Quality control

QqQ:

Triple quadrupole instrument

TOF:

Time-of-flight

References

  • Abbott SK, Jenner AM, Mitchell TW, Brown SH, Halliday GM, Garner B (2013) An improved high-throughput lipid extraction method for the analysis of human brain lipids. Lipids 48:307–318

    Article  CAS  PubMed  Google Scholar 

  • Barupal DK, Haldiya PK, Wohlgemuth G et al (2012) MetaMapp: mapping and visualizing metabolomic data by integrating information from biochemical pathways and chemical and mass spectral similarity. BMC Bioinforma 13:99

    Article  Google Scholar 

  • Berry KA, Hankin JA, Barkley RM, Spraggins JM, Caprioli RM, Murphy RC (2011) MALDI imaging of lipid biochemistry in tissues by mass spectrometry. Chem Rev 111:6491–6512

    Article  PubMed Central  PubMed  Google Scholar 

  • Bhattacharya SK (2013) Recent advances in shotgun lipidomics and their implication for vision research and ophthalmology. Curr Eye Res 38:417–427

    Article  CAS  PubMed  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  • Boccard J, Veuthey JL, Rudaz S (2010) Knowledge discovery in metabolomics: an overview of MS data handling. J Sep Sci 33:290–304

    Article  CAS  PubMed  Google Scholar 

  • Box GEP, Hunter JS, Hunter WG (2005) Statistics for experimenters: design, innovation, and discovery.: Wiley, New York

  • Brugger B (2014) Lipidomics: analysis of the lipid composition of cells and subcellular organelles by electrospray ionization mass spectrometry. Annu Rev Biochem 83:79–98

    Article  PubMed  Google Scholar 

  • Byrdwell WC (2001) Atmospheric pressure chemical ionization mass spectrometry for analysis of lipids. Lipids 36:327–346

    Article  CAS  PubMed  Google Scholar 

  • Chadeau-Hyam M, Campanella G, Jombart T et al (2013) Deciphering the complex: methodological overview of statistical models to derive OMICS-based biomarkers. Environ Mol Mutagen 54:542–557

    Article  CAS  PubMed  Google Scholar 

  • Ellis SR, Brown SH, In Het Panhuis M, Blanksby SJ, Mitchell TW (2013) Surface analysis of lipids by mass spectrometry: more than just imaging. Prog Lipid Res 52:329–353

    Article  CAS  PubMed  Google Scholar 

  • Fahy E, Subramaniam S, Murphy RC et al (2009) Update of the LIPID MAPS comprehensive classification system for lipids. J Lipid Res 50(Suppl):S9–14

    PubMed Central  PubMed  Google Scholar 

  • Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  • Fuchs B, Suss R, Schiller J (2010) An update of MALDI-TOF mass spectrometry in lipid research. Prog Lipid Res 49:450–475

    Article  CAS  PubMed  Google Scholar 

  • Han X, Yang K, Gross RW (2012) Multi-dimensional mass spectrometry-based shotgun lipidomics and novel strategies for lipidomic analyses. Mass Spectrom Rev 31:134–178

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hendriks MMWB, Eeuwijk FA, Jellema RH et al (2011) Data-processing strategies for metabolomics studies. TrAC Trends Anal Chem 30:1685–1698

    Article  CAS  Google Scholar 

  • Herzog R, Schuhmann K, Schwudke D et al (2012) LipidXplorer: a software for consensual cross-platform lipidomics. PLoS ONE 7:e29851

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hyotylainen T, Oresic M (2014) Systems biology strategies to study lipidomes in health and disease. Prog Lipid Res 55C:43–60

    Article  Google Scholar 

  • Jung HR, Sylvanne T, Koistinen KM, Tarasov K, Kauhanen D, Ekroos K (2011) High throughput quantitative molecular lipidomics. Biochim Biophys Acta 1811:925–934

    Article  CAS  PubMed  Google Scholar 

  • Karnovsky A, Weymouth T, Hull T et al (2012) Metscape 2 bioinformatics tool for the analysis and visualization of metabolomics and gene expression data. Bioinformatics 28:373–380

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kind T, Liu KH, Lee do Y, DeFelice B, Meissen JK, Fiehn O (2013) LipidBlast in silico tandem mass spectrometry database for lipid identification. Nat Methods 10:755–758

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Knittelfelder OL, Weberhofer BP, Eichmann TO, Kohlwein SD, Rechberger GN (2014) A versatile ultra-high performance LC-MS method for lipid profiling. J Chromatogr B: Analyt Technol Biomed Life Sci 951–952:119–128

    Article  Google Scholar 

  • Kotze HL, Armitage EG, Sharkey KJ et al (2013) A novel untargeted metabolomics correlation-based network analysis incorporating human metabolic reconstructions. BMC Syst Biol 7:107

    Article  PubMed Central  PubMed  Google Scholar 

  • Li M, Yang L, Bai Y, Liu H (2014) Analytical methods in lipidomics and their applications. Anal Chem 86:161–175

    Article  CAS  PubMed  Google Scholar 

  • Liu ZY (2012) An introduction to hybrid ion trap/time-of-flight mass spectrometry coupled with liquid chromatography applied to drug metabolism studies. J Mass Spectrom 47:1627–1642

    Article  CAS  PubMed  Google Scholar 

  • Mahadevan R, Edwards JS, Doyle FJ 3rd (2002) Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophys J 83:1331–1340

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matyash V, Liebisch G, Kurzchalia TV, Shevchenko A, Schwudke D (2008) Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J Lipid Res 49:1137–1146

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mueller D, Heinzle E (2013) Stable isotope-assisted metabolomics to detect metabolic flux changes in mammalian cell cultures. Curr Opin Biotechnol 24:54–59

    Article  CAS  PubMed  Google Scholar 

  • Nielsen J (2003) It is all about metabolic fluxes. J Bacteriol 185:7031–7035

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oresic M (2011) Informatics and computational strategies for the study of lipids. Biochim Biophys Acta 1811:991–999

    Article  CAS  PubMed  Google Scholar 

  • Orth JD, Thiele I, Palsson BO (2010) What is flux balance analysis? Nat Biotechnol 28:245–248

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peskov K, Mogilevskaya E, Demin O (2012) Kinetic modelling of central carbon metabolism in Escherichia coli. FEBS J 279:3374–3385

    Article  CAS  PubMed  Google Scholar 

  • Reis A, Rudnitskaya A, Blackburn GJ, Mohd Fauzi N, Pitt AR, Spickett CM (2013) A comparison of five lipid extraction solvent systems for lipidomic studies of human LDL. J Lipid Res 54:1812–1824

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Saccenti E, Hoefsloot HJ, Smilde A, Westerhuis J, Hendriks MWB (2014) Reflections on univariate and multivariate analysis of metabolomics data. Metabolomics 10:361–374

    Article  CAS  Google Scholar 

  • Salek RM, Haug K, Steinbeck C (2013) Dissemination of metabolomics results: role of MetaboLights and COSMOS. Gigascience 2:8

    Article  PubMed Central  PubMed  Google Scholar 

  • Sreenivasaiah PK, Rani S, Cayetano J, Arul N, Kim do H (2012) IPAVS: integrated pathway resources, analysis and visualization system. Nucleic Acids Res 40:D803–808

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Theodoridis GA, Gika HG, Want EJ, Wilson ID (2012) Liquid chromatography-mass spectrometry based global metabolite profiling: a review. Anal Chim Acta 711:7–16

    Article  CAS  PubMed  Google Scholar 

  • Want E, Masson P (2011) Processing and analysis of GC/LC-MS-based metabolomics data. Methods Mol Biol 708:277–298

    Article  CAS  PubMed  Google Scholar 

  • Wolf C, Quinn PJ (2008) Lipidomics: practical aspects and applications. Prog Lipid Res 47:15–36

    Article  CAS  PubMed  Google Scholar 

  • Xia J, Wishart DS (2011) Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst. Nat Protoc 6:743–760

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Willem Kulik for critical reading of the manuscript and Henk van Lenthe for technical assistance.

Compliance with ethics guidelines

This article does not contain any studies with human or animal subjects performed by any of the authors.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric M. Vaz.

Additional information

Communicated by: Matthias Baumgartner

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaz, F.M., Pras-Raves, M., Bootsma, A.H. et al. Principles and practice of lipidomics. J Inherit Metab Dis 38, 41–52 (2015). https://doi.org/10.1007/s10545-014-9792-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-014-9792-6

Keywords

Navigation