Skip to main content
Log in

The spectrum of pyruvate oxidation defects in the diagnosis of mitochondrial disorders

  • Original Article
  • Published:
Journal of Inherited Metabolic Disease

Abstract

Pyruvate oxidation defects (PODs) are among the most frequent causes of deficiencies in the mitochondrial energy metabolism and represent a substantial subset of classical mitochondrial diseases. PODs are not only caused by deficiency of subunits of the pyruvate dehydrogenase complex (PDHC) but also by various disorders recently described in the whole pyruvate oxidation route including cofactors, regulation of PDHC and the mitochondrial pyruvate carrier. Our own patients from 2000 to July 2014 and patients identified by a systematic survey of the literature from 1970 to July 2014 with a pyruvate oxidation disorder and a genetically proven defect were included in the study (n=628). Of these defects 74.2% (n=466) belong to PDHC subunits, 24.5% (n=154) to cofactors, 0.5% (n=3) to PDHC regulation and 0.8% (n=5) to mitochondrial pyruvate import. PODs are underestimated in the field of mitochondrial diseases because not all diagnostic centres include biochemical investigations of PDHC in their routine analysis. Cofactor and transport defects can be missed, if pyruvate oxidation is not measured in intact mitochondria routinely. Furthermore deficiency of the X-chromosomal PDHA1 can be biochemically missed depending on the X-inactivation pattern. This is reflected by an increasing number of patients diagnosed recently by genetic high throughput screening approaches. PDHC deficiency including regulation and import affect mainly the glucose dependent central and peripheral nervous system and skeletal muscle. PODs with combined enzyme defects affect also other organs like heart, lung and liver. The spectrum of clinical presentation of PODs is still expanding. PODs are a therapeutically interesting group of mitochondrial diseases since some can be bypassed by ketogenic diet or treated by cofactor supplementation. PDHC kinase inhibition, chaperone therapy and PGC1α stimulation is still a matter of further investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ah Mew N, Loewenstein JB, Kadom N et al (2011) MRI features of 4 female patients with pyruvate dehydrogenase E1 alpha deficiency. Pediatr Neurol 45:57–59

    Article  PubMed  Google Scholar 

  • Ajit Bolar N, Vanlander AV, Wilbrecht C et al (2013) Mutation of the iron-sulfur cluster assembly gene IBA57 causes severe myopathy and encephalopathy. Hum Mol Genet 22:2590–2602

    Article  CAS  PubMed  Google Scholar 

  • Alfadhel M, Almuntashri M, Jadah RH et al (2013) Biotin-responsive basal ganglia disease should be renamed biotin-thiamine-responsive basal ganglia disease: a retrospective review of the clinical, radiological and molecular findings of 18 new cases. Orphanet J Rare Dis 8:83

    Article  PubMed Central  PubMed  Google Scholar 

  • Aral B, Benelli C, Ait-Ghezala G et al (1997) Mutations in PDX1, the human lipoyl-containing component X of the pyruvate dehydrogenase-complex gene on chromosome 11p1, in congenital lactic acidosis. Am J Hum Genet 61:1318–1326

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baker PR 2nd, Friederich MW, Swanson MA et al (2014) Variant non ketotic hyperglycinemia is caused by mutations in LIAS, BOLA3 and the novel gene GLRX5. Brain 137:366–379

    Article  PubMed Central  PubMed  Google Scholar 

  • Blass JP, Avigan J, Uhlendorf BW (1970) A defect in pyruvate decarboxylase in a child with an intermittent movement disorder. J Clin Invest 49:423–432

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bonne G, Benelli C, De Meirleir L et al (1993) E1 pyruvate dehydrogenase deficiency in a child with motor neuropathy. Pediatr Res 33:284–288

    Article  CAS  PubMed  Google Scholar 

  • Bookelman H, Trijbels JM, Sengers RC, Janssen AJ, Veerkamp JH, Stadhouders AM (1978) Pyruvate oxidation in rat and human skeletal muscle mitochondria. Biochem Med 20:395–403

    Article  CAS  PubMed  Google Scholar 

  • Brassier A, Ottolenghi C, Boutron A et al (2013) Dihydrolipoamide dehydrogenase deficiency: a still overlooked cause of recurrent acute liver failure and Reye-like syndrome. Mol Genet Metab 109:28–32

    Article  CAS  PubMed  Google Scholar 

  • Bricker DK, Taylor EB, Schell JC et al (2012) A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans. Science 337:96–100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brivet M, Garcia-Cazorla A, Lyonnet S et al (2003) Impaired mitochondrial pyruvate importation in a patient and a fetus at risk. Mol Genet Metab 78:186–192

    Article  CAS  PubMed  Google Scholar 

  • Brown G (2014) Defects of thiamine transport and metabolism. J Inherit Metab Dis 37:577–585

    Article  CAS  PubMed  Google Scholar 

  • Brown RM, Head RA, Boubriak II, Leonard JV, Thomas NH, Brown GK (2004) Mutations in the gene for the E1beta subunit: a novel cause of pyruvate dehydrogenase deficiency. Hum Genet 115:123–127

    Article  PubMed  Google Scholar 

  • Cameron JM, Janer A, Levandovskiy V et al (2011) Mutations in iron-sulfur cluster scaffold genes NFU1 and BOLA3 cause a fatal deficiency of multiple respiratory chain and 2-oxoacid dehydrogenase enzymes. Am J Hum Genet 89:486–495

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cameron JM, Maj M, Levandovskiy V et al (2009) Pyruvate dehydrogenase phosphatase 1 (PDP1) null mutation produces a lethal infantile phenotype. Hum Genet 125:319–326

    Article  CAS  PubMed  Google Scholar 

  • Carrozzo R, Torraco A, Fiermonte G, et al (2014) Riboflavin responsive mitochondrial myopathy is a new phenotype of dihydrolipoamide dehydrogenase deficiency. The chaperon-like effect of vitamin B2. Mitochondrion

  • Danhauser K, Sauer SW, Haack TB et al (2012) DHTKD1 mutations cause 2-aminoadipic and 2-oxoadipic aciduria. Am J Hum Genet 91:1082–1087

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • DeBrosse SD, Okajima K, Zhang S et al (2012) Spectrum of neurological and survival outcomes in pyruvate dehydrogenase complex (PDC) deficiency: lack of correlation with genotype. Mol Genet Metab 107:394–402

    Article  CAS  PubMed  Google Scholar 

  • Debs R, Depienne C, Rastetter A et al (2010) Biotin-responsive basal ganglia disease in ethnic Europeans with novel SLC19A3 mutations. Arch Neurol 67:126–130

    PubMed  Google Scholar 

  • Di Rocco M, Lamba LD, Minniti G, Caruso U, Naito E (2000) Outcome of thiamine treatment in a child with Leigh disease due to thiamine-responsive pyruvate dehydrogenase deficiency. Eur J Paediatr Neurol 4:115–117

    Article  PubMed  Google Scholar 

  • Djouadi F, Bastin J (2011) Species differences in the effects of bezafibrate as a potential treatment of mitochondrial disorders. Cell Metab 14:715–716, author reply 717

    Article  CAS  PubMed  Google Scholar 

  • El-Gharbawy AH, Boney A, Young SP, Kishnani PS (2011) Follow-up of a child with pyruvate dehydrogenase deficiency on a less restrictive ketogenic diet. Mol Genet Metab 102:214–215

    Article  CAS  PubMed  Google Scholar 

  • Endo H, Hasegawa K, Narisawa K, Tada K, Kagawa Y, Ohta S (1989) Defective gene in lactic acidosis: abnormal pyruvate dehydrogenase E1 alpha-subunit caused by a frame shift. Am J Hum Genet 44:358–364

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ferriero R, Brunetti-Pierri N (2013) Phenylbutyrate increases activity of pyruvate dehydrogenase complex. Oncotarget 4:804–805

    PubMed Central  PubMed  Google Scholar 

  • Ferriero R, Manco G, Lamantea E et al (2013) Phenylbutyrate therapy for pyruvate dehydrogenase complex deficiency and lactic acidosis. Sci Transl Med 5:175ra131

    Article  Google Scholar 

  • Fraser J, Vanderver A, Yang S et al (2014) Thiamine pyrophosphokinase deficiency causes a Leigh disease like phenotype in a sibling pair: identification through whole exome sequencing and management strategies. Mol Genet Metab Rep 1:66–70

    Article  CAS  Google Scholar 

  • Geoffroy V, Fouque F, Benelli C et al (1996) Defect in the X-lipoyl-containing component of the pyruvate dehydrogenase complex in a patient with neonatal lactic acidemia. Pediatrics 97:267–272

    CAS  PubMed  Google Scholar 

  • Gerards M, Kamps R, van Oevelen J et al (2013) Exome sequencing reveals a novel Moroccan founder mutation in SLC19A3 as a new cause of early-childhood fatal Leigh syndrome. Brain 136:882–890

    Article  PubMed  Google Scholar 

  • Giribaldi G, Doria-Lamba L, Biancheri R et al (2012) Intermittent-relapsing pyruvate dehydrogenase complex deficiency: a case with clinical, biochemical, and neuroradiological reversibility. Dev Med Child Neurol 54:472–476

    Article  PubMed  Google Scholar 

  • Haack TB, Klee D, Strom TM et al (2014) Infantile Leigh-like syndrome caused by SLC19A3 mutations is a treatable disease. Brain 137:e295

    Article  PubMed  Google Scholar 

  • Haack TB, Rolinski B, Haberberger B et al (2013) Homozygous missense mutation in BOLA3 causes multiple mitochondrial dysfunctions syndrome in two siblings. J Inherit Metab Dis 36:55–62

    Article  CAS  PubMed  Google Scholar 

  • Han Z, Berendzen K, Zhong L et al (2008) A combined therapeutic approach for pyruvate dehydrogenase deficiency using self-complementary adeno-associated virus serotype-specific vectors and dichloroacetate. Mol Genet Metab 93:381–387

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Haviv R, Zeharia A, Belaiche C, Haimi Cohen Y, Saada A (2014) Elevated plasma citrulline: look for dihydrolipoamide dehydrogenase deficiency. Eur J Pediatr 173:243–245

    Article  CAS  PubMed  Google Scholar 

  • Head RA, Brown RM, Zolkipli Z et al (2005) Clinical and genetic spectrum of pyruvate dehydrogenase deficiency: dihydrolipoamide acetyltransferase (E2) deficiency. Ann Neurol 58:234–241

    Article  CAS  PubMed  Google Scholar 

  • Herzig S, Raemy E, Montessuit S et al (2012) Identification and functional expression of the mitochondrial pyruvate carrier. Science 337:93–96

    Article  CAS  PubMed  Google Scholar 

  • Imbard A, Boutron A, Vequaud C et al (2011) Molecular characterization of 82 patients with pyruvate dehydrogenase complex deficiency. Structural implications of novel amino acid substitutions in E1 protein. Mol Genet Metab 104:507–516

    Article  CAS  PubMed  Google Scholar 

  • Ivanov IS, Azmanov DN, Ivanova MB et al (2014) Founder p.Arg 446* mutation in the PDHX gene explains over half of cases with congenital lactic acidosis in Roma children. Mol Genet Metab 113:76–83

    Article  CAS  PubMed  Google Scholar 

  • Kennerson ML, Yiu EM, Chuang DT et al (2013) A new locus for X-linked dominant Charcot-Marie-Tooth disease (CMTX6) is caused by mutations in the pyruvate dehydrogenase kinase isoenzyme 3 (PDK3) gene. Hum Mol Genet 22:1404–1416

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kevelam SH, Bugiani M, Salomons GS et al (2013) Exome sequencing reveals mutated SLC19A3 in patients with an early-infantile, lethal encephalopathy. Brain 136:1534–1543

    Article  PubMed  Google Scholar 

  • Kollberg G, Tulinius M, Melberg A et al (2009) Clinical manifestation and a new ISCU mutation in iron-sulphur cluster deficiency myopathy. Brain 132:2170–2179

    Article  PubMed  Google Scholar 

  • Lawson JE, Park SH, Mattison AR, Yan J, Reed LJ (1997) Cloning, expression, and properties of the regulatory subunit of bovine pyruvate dehydrogenase phosphatase. J Biol Chem 272:31625–31629

    Article  CAS  PubMed  Google Scholar 

  • Lissens W, De Meirleir L, Seneca S et al (2000) Mutations in the X-linked pyruvate dehydrogenase (E1) alpha subunit gene (PDHA1) in patients with a pyruvate dehydrogenase complex deficiency. Hum Mutat 15:209–219

    Article  CAS  PubMed  Google Scholar 

  • Liu TC, Kim H, Arizmendi C, Kitano A, Patel MS (1993) Identification of two missense mutations in a dihydrolipoamide dehydrogenase-deficient patient. Proc Natl Acad Sci U S A 90:5186–5190

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Magner M, Vinsova K, Tesarova M et al (2011) Two patients with clinically distinct manifestation of pyruvate dehydrogenase deficiency due to mutations in PDHA1 gene. Prague Med Rep 112:18–28

    CAS  PubMed  Google Scholar 

  • Maj MC, MacKay N, Levandovskiy V et al (2005) Pyruvate dehydrogenase phosphatase deficiency: identification of the first mutation in two brothers and restoration of activity by protein complementation. J Clin Endocrinol Metab 90:4101–4107

    Article  CAS  PubMed  Google Scholar 

  • Mayr JA, Feichtinger RG, Tort F, Ribes A, Sperl W (2014) Lipoic acid biosynthesis defects. J Inherit Metab Dis 37:553–563

    Article  CAS  PubMed  Google Scholar 

  • Mayr JA, Freisinger P, Schlachter K et al (2011a) Thiamine pyrophosphokinase deficiency in encephalopathic children with defects in the pyruvate oxidation pathway. Am J Hum Genet 89:806–812

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mayr JA, Koch J, Fauth C et al (2012) A 1.1 million base pair X-chromosomal deletion covering the PDHA1 and CDKL5 genes in a female patient with West syndrome and pyruvate oxidation deficiency. Neuropediatrics 43:130–134

    Article  CAS  PubMed  Google Scholar 

  • Mayr JA, Zimmermann FA, Fauth C et al (2011b) Lipoic acid synthetase deficiency causes neonatal-onset epilepsy, defective mitochondrial energy metabolism, and glycine elevation. Am J Hum Genet 89:792–797

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McWilliam CA, Ridout CK, Brown RM, McWilliam RC, Tolmie J, Brown GK (2010) Pyruvate dehydrogenase E2 deficiency: a potentially treatable cause of episodic dystonia. Eur J Paediatr Neurol 14:349–353

    Article  PubMed  Google Scholar 

  • Mochel F, Knight MA, Tong WH et al (2008) Splice mutation in the iron-sulfur cluster scaffold protein ISCU causes myopathy with exercise intolerance. Am J Hum Genet 82:652–660

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Naito E, Ito M, Yokota I et al (2002) Thiamine-responsive pyruvate dehydrogenase deficiency in two patients caused by a point mutation (F205L and L216F) within the thiamine pyrophosphate binding region. Biochim Biophys Acta 1588:79–84

    Article  CAS  PubMed  Google Scholar 

  • Navarro-Sastre A, Tort F, Stehling O et al (2011) A fatal mitochondrial disease is associated with defective NFU1 function in the maturation of a subset of mitochondrial Fe-S proteins. Am J Hum Genet 89:656–667

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nizon M, Boutron A, Boddaert N et al (2014) Leukoencephalopathy with cysts and hyperglycinemia may result from NFU1 deficiency. Mitochondrion 15:59–64

    Article  CAS  PubMed  Google Scholar 

  • Okajima K, Korotchkina LG, Prasad C et al (2008) Mutations of the E1beta subunit gene (PDHB) in four families with pyruvate dehydrogenase deficiency. Mol Genet Metab 93:371–380

    Article  CAS  PubMed  Google Scholar 

  • Olsson A, Lind L, Thornell LE, Holmberg M (2008) Myopathy with lactic acidosis is linked to chromosome 12q23.3-24.11 and caused by an intron mutation in the ISCU gene resulting in a splicing defect. Hum Mol Genet 17:1666–1672

    Article  CAS  PubMed  Google Scholar 

  • Ortigoza-Escobar JD, Serrano M, Molero M et al (2014) Thiamine transporter-2 deficiency: outcome and treatment monitoring. Orphanet J Rare Dis 9:92

    Article  PubMed Central  PubMed  Google Scholar 

  • Pastoris O, Savasta S, Foppa P, Catapano M, Dossena M (1996) Pyruvate dehydrogenase deficiency in a child responsive to thiamine treatment. Acta Paediatr 85:625–628

    Article  CAS  PubMed  Google Scholar 

  • Patel KP, O'Brien TW, Subramony SH, Shuster J, Stacpoole PW (2012) The spectrum of pyruvate dehydrogenase complex deficiency: clinical, biochemical and genetic features in 371 patients. Mol Genet Metab 105:34–43

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Paul VD, Lill R (2014) SnapShot: Eukaryotic Fe-S Protein Biogenesis. Cell Metab 20(384–384):e381

    Google Scholar 

  • Pfeffer G, Horvath R, Klopstock T et al (2013) New treatments for mitochondrial disease-no time to drop our standards. Nat Rev Neurol 9:474–481

    Article  CAS  PubMed  Google Scholar 

  • Prasad C, Rupar T, Prasad AN (2011) Pyruvate dehydrogenase deficiency and epilepsy. Brain Dev 33:856–865

    Article  PubMed  Google Scholar 

  • Quinonez SC, Leber SM, Martin DM, Thoene JG, Bedoyan JK (2013) Leigh syndrome in a girl with a novel DLD mutation causing E3 deficiency. Pediatr Neurol 48:67–72

    Article  PubMed  Google Scholar 

  • Quinonez SC, Thoene JG (1993) Dihydrolipoamide dehydrogenase deficiency. In Pagon RA, Adam MP, Ardinger HH et al (eds.) GeneReviews. University of Washington, Seattle

  • Quintana E, Mayr JA, Garcia Silva MT et al (2009) PDH E1beta deficiency with novel mutations in two patients with Leigh syndrome. J Inherit Metab Dis 32(Suppl 1):S339–S343

    Article  PubMed  Google Scholar 

  • Quintana E, Pineda M, Font A et al (2010) Dihydrolipoamide dehydrogenase (DLD) deficiency in a Spanish patient with myopathic presentation due to a new mutation in the interface domain. J Inherit Metab Dis 33(Suppl 3):S315–S319

    Article  PubMed  Google Scholar 

  • Rustin P, Chretien D, Bourgeron T et al (1994) Biochemical and molecular investigations in respiratory chain deficiencies. Clin Chim Acta 228:35–51

    Article  CAS  PubMed  Google Scholar 

  • Sanaker PS, Toompuu M, Hogan VE et al (2010) Differences in RNA processing underlie the tissue specific phenotype of ISCU myopathy. Biochim Biophys Acta 1802:539–544

    Article  CAS  PubMed  Google Scholar 

  • Seyda A, Newbold RF, Hudson TJ et al (2001) A novel syndrome affecting multiple mitochondrial functions, located by microcell-mediated transfer to chromosome 2p14-2p13. Am J Hum Genet 68:386–396

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shaag A, Saada A, Berger I et al (1999) Molecular basis of lipoamide dehydrogenase deficiency in Ashkenazi Jews. Am J Med Genet 82:177–182

    Article  CAS  PubMed  Google Scholar 

  • Sheftel AD, Wilbrecht C, Stehling O et al (2012) The human mitochondrial ISCA1, ISCA2, and IBA57 proteins are required for [4Fe-4S] protein maturation. Mol Biol Cell 23:1157–1166

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Silva MJ, Pinheiro A, Eusebio F, Gaspar A, Tavares de Almeida I, Rivera I (2009) Pyruvate dehydrogenase deficiency: identification of a novel mutation in the PDHA1 gene which responds to amino acid supplementation. Eur J Pediatr 168:17–22

    Article  Google Scholar 

  • Singhi P, De Meirleir L, Lissens W, Singhi S, Saini AG (2013) Pyruvate dehydrogenase-e1alpha deficiency presenting as recurrent demyelination: an unusual presentation and a novel mutation. JIMD Rep 10:107–111

    Article  PubMed Central  PubMed  Google Scholar 

  • Soreze Y, Boutron A, Habarou F et al (2013) Mutations in human lipoyltransferase gene LIPT1 cause a Leigh disease with secondary deficiency for pyruvate and alpha-ketoglutarate dehydrogenase. Orphanet J Rare Dis 8:192

    Article  PubMed Central  PubMed  Google Scholar 

  • Sperl W, Ruitenbeek W, Sengers RC et al (1992) Combined deficiencies of the pyruvate dehydrogenase complex and enzymes of the respiratory chain in mitochondrial myopathies. Eur J Pediatr 151:192–195

    Article  CAS  PubMed  Google Scholar 

  • Sperl W, Trijbels JM, Ruitenbeek W et al (1993) Measurement of totally activated pyruvate dehydrogenase complex activity in human muscle: evaluation of a useful assay. Enzyme Protein 47:37–46

    CAS  PubMed  Google Scholar 

  • Spiegel R, Shaag A, Edvardson S et al (2009) SLC25A19 mutation as a cause of neuropathy and bilateral striatal necrosis. Ann Neurol 66:419–424

    Article  CAS  PubMed  Google Scholar 

  • Stacpoole PW, Kerr DS, Barnes C et al (2006) Controlled clinical trial of dichloroacetate for treatment of congenital lactic acidosis in children. Pediatrics 117:1519–1531

    Article  PubMed  Google Scholar 

  • Stehling O, Wilbrecht C, Lill R (2014) Mitochondrial iron-sulfur protein biogenesis and human disease. Biochimie 100:61–77

    Article  CAS  PubMed  Google Scholar 

  • Steller J, Gargus JJ, Gibbs LH, Hasso AN, Kimonis VE (2014) Mild phenotype in a male with pyruvate dehydrogenase complex deficiency associated with novel hemizygous in-frame duplication of the E1alpha subunit gene (PDHA1). Neuropediatrics 45:56–60

    Article  CAS  PubMed  Google Scholar 

  • Strassburg HM, Koch J, Mayr J, Sperl W, Boltshauser E (2006) Acute flaccid paralysis as initial symptom in 4 patients with novel E1alpha mutations of the pyruvate dehydrogenase complex. Neuropediatrics 37:137–141

    Article  CAS  PubMed  Google Scholar 

  • Tamaru S, Kikuchi A, Takagi K et al (2012) A case of pyruvate dehydrogenase E1alpha subunit deficiency with antenatal brain dysgenesis demonstrated by prenatal sonography and magnetic resonance imaging. J Clin Ultrasound 40:234–238

    Article  PubMed  Google Scholar 

  • Tort F, Ferrer-Cortes X, Thio M et al (2014) Mutations in the lipoyltransferase LIPT1 gene cause a fatal disease associated with a specific lipoylation defect of the 2-ketoacid dehydrogenase complexes. Hum Mol Genet 23:1907–1915

    Article  CAS  PubMed  Google Scholar 

  • Wexler ID, Hemalatha SG, McConnell J et al (1997) Outcome of pyruvate dehydrogenase deficiency treated with ketogenic diets. Studies in patients with identical mutations. Neurology 49:1655–1661

    Article  CAS  PubMed  Google Scholar 

  • Wibom R, Hagenfeldt L, von Dobeln U (2002) Measurement of ATP production and respiratory chain enzyme activities in mitochondria isolated from small muscle biopsy samples. Anal Biochem 311:139–151

    Article  CAS  PubMed  Google Scholar 

  • Yoshida I, Sweetman L, Kulovich S, Nyhan WL, Robinson BH (1990) Effect of lipoic acid in a patient with defective activity of pyruvate dehydrogenase, 2-oxoglutarate dehydrogenase, and branched-chain keto acid dehydrogenase. Pediatr Res 27:75–79

    Article  CAS  PubMed  Google Scholar 

  • Zeng WQ, Al-Yamani E, Acierno JS Jr et al (2005) Biotin-responsive basal ganglia disease maps to 2q36.3 and is due to mutations in SLC19A3. Am J Hum Genet 77:16–26

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by the E-Rare project GENOMIT (FWF I 920-B13 for W.S. and 01GM1207 for H.P.) and the Vereinigung zur Förderung Pädiatrischer Forschung und Fortbildung Salzburg.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Sperl.

Additional information

Communicated by: Garry Brown

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sperl, W., Fleuren, L., Freisinger, P. et al. The spectrum of pyruvate oxidation defects in the diagnosis of mitochondrial disorders. J Inherit Metab Dis 38, 391–403 (2015). https://doi.org/10.1007/s10545-014-9787-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-014-9787-3

Keywords

Navigation