Skip to main content

3-Hydroxyglutaric Acid as a Neurotoxin

  • Reference work entry
  • First Online:
Handbook of Neurotoxicity

Abstract

3-Hydroxyglutaric acid (3HGA) accumulates predominantly in the brain and biological fluids of individuals affected by glutaric acidemia type 1 (GA 1), being considered the most reliable biochemical marker for the diagnosis of this disease. GA 1 is a hereditary neurometabolic disease clinically characterized by acute episodes of encephalopathy resembling intoxication, which are associated with extensive striatal damage and followed by a complex movement disorder. Progressive striatal and extrastriatal abnormalities associated with white matter changes attributed to defective myelination are also common in this disease. Although brain concentrations of 3HGA in GA 1 are still unknown, an important characteristic of this organic acid is that, once produced mainly from lysine, it cannot leave the central nervous system because of very limited efflux, therefore, accumulating in this tissue. The pathogenesis of the brain damage of GA 1 is still poorly established, although neurotoxic effects have been attributed to 3HGA. In this particular, experimental data indicate that 3HGA (i) induces excitotoxicity, possibly due to its similar chemical structure to glutamate, the main excitatory neurotransmitter; (ii) disrupts redox homeostasis, increasing production of mitochondrial reactive species, decreasing cellular antioxidant defenses, and inducing oxidative damage to biomolecules; (iii) impairs bioenergetics, by inhibition of mitochondrial respiration and compromising the citric acid cycle activity; (iv) promotes reactive astrogliosis; and (v) causes blood-brain barrier breakage and cerebral vascular alterations. However, the pathophysiological relevance of the aforementioned deleterious effects on the neuropathology of GA 1 should be taken cautiously since some of these data were obtained with supraphysiological concentrations of 3HGA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3HGA:

3-Hydroxyglutaric acid

3-MGH:

3-Methylglutaconyl-CoA hydratase

AMPA:

α-Amino-3-hydroxy-5-methylisoxazole propionic acid

BBB :

Blood-brain barrier

C5DC :

Glutarylcarnitine

CNS :

Central nervous system

CPT 1 :

Carnitine palmitoyltransferase 1

CSF :

Cerebrospinal fluid

EC:

Enzyme Commission

GA :

Glutaric acid

GA 1 :

Glutaric acidemia type I

GABA :

γ-Aminobutyric acid

GCDH :

Glutaryl-CoA dehydrogenase

Gcdh−/− :

Homozygous glutaryl-CoA dehydrogenase deficient mice

GFAP :

Glial fibrillary acidic protein

GluRs:

Glutamatergic receptors

GPx :

Glutathione peroxidase

GSH :

Reduced glutathione

HADH:

3-Hydroxy-acyl-CoA dehydrogenase

LCAD:

Long-chain acyl-CoA dehydrogenase

L-NAME:

Nω-Nitro-L-arginine

Lys:

Lysine

MCAD :

Medium-chain acyl-CoA dehydrogenase

MDA :

Malondialdehyde

MK-801:

(5R,10S)-(+)-5-Methyl-10,11-dihydro-5H-dibenzo[a,d]-cyclohepten-5-10-imine

NaC3 :

Sodium dicarboxylate cotransporter 3

NBQX:

2,3-Dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline

NMDA :

N-Methyl-D-aspartate

NO:

Nitric oxide

NOS:

Nitric oxide synthase

OAT :

Organic anion transporter

OMIM :

Online Mendelian Inheritance in Man

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

RS:

Reactive species

S100B:

S100 calcium-binding protein B

VEGF:

Vascular endothelial growth factor

References

  • Barić, I., Wagner, L., Feyh, P., Liesert, M., Buckel, W., & Hoffmann, G. F. (1999). Sensitivity and speciticity of free and total glutaric acid and 3-hydroxyglutaric acid measurements by stable-isotope dilution assays for the diagnosis of glutaric aciduria type I. Journal of Inherited Metabolic Disease, 22, 867–882. https://doi.org/10.1023/A:1005683222187

    Article  Google Scholar 

  • Bennett, M. J., & Santani, A. B. (2016). Carnitine palmitoyltransferase 1A deficiency. In M. P. Adam, H. H. Ardinger, R. A. Pagon, S. E. Wallace, L. J. H. Bean, K. Stephens, & A. Amemiya (Eds.), GeneReviews® [Internet] (pp. 1–15). University of Washington.

    Google Scholar 

  • Bennett, M. J., Marlow, N., Pollitt, R. J., & Wales, J. K. H. (1986). Glutaric aciduria type 1: Biochemical investigations and postmortem findings. European Journal of Pediatrics, 145, 403–405. https://doi.org/10.1007/BF00439248

    Article  CAS  Google Scholar 

  • Bjugstad, K. B., Zawada, W. M., Goodman, S. I., & Freed, C. R. (2001). IGF-1 and bFGF reduce glutaric acid and 3-hydroxyglutaric acid toxicity in striatal cultures. Journal of Inherited Metabolic Disease, 24, 631–647. https://doi.org/10.1023/A:1012706908779

    Article  CAS  Google Scholar 

  • Burckhardt, G., & Burckhardt, B. C. (2011). In vitro and in vivo evidence of the importance of organic anion transporters (OATs) in drug therapy. Handbook of Experimental Pharmacology, 201, 29–104. https://doi.org/10.1007/978-3-642-14541-4_2

    Article  CAS  Google Scholar 

  • Christensen, E., Ribes, A., Merinero, B., & Zschocke, J. (2004). Correlation of genotype and phenotype in glutaryl-CoA dehydrogenase deficiency. Journal of Inherited Metabolic Disease, 27, 861–868. https://doi.org/10.1023/B:BOLI.0000045770.93429.3c

    Article  CAS  Google Scholar 

  • Dalcin, K. B., Rosa, R. B., Schmidt, A. L., Winter, J. S., Leipnitz, G., Dutra-Filho, C. S., Wannmacher, C. M. D., Porciúncula, L. O., Souza, D. O., & Wajner, M. (2007). Age and brain structural related effects of glutaric and 3-hydroxyglutaric acids on glutamate binding to plasma membranes during rat brain development. Cellular and Molecular Neurobiology, 27, 805–818. https://doi.org/10.1007/s10571-007-9197-2

    Article  CAS  Google Scholar 

  • De Mello, C. F., Kölker, S., Ahlemeyer, B., De Souza, F. R., Fighera, M. R., Mayatepek, E., Krieglstein, J., Hoffmann, G. F., & Wajner, M. (2001). Intrastriatal administration of 3-hydroxyglutaric acid induces convulsions and striatal lesions in rats. Brain Research, 916, 70–75. https://doi.org/10.1016/S0006-8993(01)02865-7

  • Dong, X. X., Wang, Y., & Qin, Z. H. (2009). Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacologica Sinica, 30, 379–387. https://doi.org/10.1038/aps.2009.24

    Article  CAS  Google Scholar 

  • Escartin, C., Galea, E., Lakatos, A., O’Callaghan, J. P., Petzold, G. C., Serrano-Pozo, A., Steinhäuser, C., Volterra, A., Carmignoto, G., Agarwal, A., Allen, N. J., Araque, A., Barbeito, L., Barzilai, A., Bergles, D. E., Bonvento, G., Butt, A. M., Chen, W. T., Cohen-Salmon, M., … Verkhratsky, A. (2021). Reactive astrocyte nomenclature, definitions, and future directions. Nature Neuroscience, 24, 312–325. https://doi.org/10.1038/s41593-020-00783-4

    Article  CAS  Google Scholar 

  • Freudenberg, F., Lukacs, Z., & Ullrich, K. (2004). 3-Hydroxyglutaric acid fails to affect the viability of primary neuronal rat cells. Neurobiology of Disease, 16, 581–584. https://doi.org/10.1016/j.nbd.2004.05.001

    Article  CAS  Google Scholar 

  • Funk, C. B. R., Prasad, A. N., Frosk, P., Sauer, S., Kölker, S., Greenberg, C. R., & Del Bigio, M. R. (2005). Neuropathological, biochemical and molecular findings in a glutaric acidemia type 1 cohort. Brain, 128, 711–722. https://doi.org/10.1093/brain/awh401

    Article  Google Scholar 

  • Hagos, Y., Krick, W., Braulke, T., Mühlhausen, C., Burckhardt, G., & Burckhardt, B. C. (2008). Organic anion transporters OAT1 and OAT4 mediate the high affinity transport of glutarate derivatives accumulating in patients with glutaric acidurias. Pflugers Archiv European Journal of Physiology, 457, 223–231. https://doi.org/10.1007/s00424-008-0489-2

    Article  CAS  Google Scholar 

  • Halliwell, B., & Gutteridge, J. M. C. (2015). Free radicals in biology and medicine (4th ed.). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780198717478.001.0001

    Book  Google Scholar 

  • Harting, I., Neumaier-Probst, E., Seitz, A., Maier, E. M., Assmann, B., Baric, I., Troncoso, M., Mühlhausen, C., Zschocke, J., Boy, N. P. S., Hoffmann, G. F., Garbade, S. F., & Kölker, S. (2009). Dynamic changes of striatal and extrastriatal abnormalities in glutaric aciduria type I. Brain, 132, 1764–1782. https://doi.org/10.1093/brain/awp112

    Article  Google Scholar 

  • Keyser, B., Glatzel, M., Stellmer, F., Kortmann, B., Lukacs, Z., Kölker, S., Sauer, S. W., Muschol, N., Herdering, W., Thiem, J., Goodman, S. I., Koeller, D. M., Ullrich, K., Braulke, T., & Mühlhausen, C. (2008). Transport and distribution of 3-hydroxyglutaric acid before and during induced encephalopathic crises in a mouse model of glutaric aciduria type 1. Biochimica et Biophysica Acta – Molecular Basis of Disease, 1782, 385–390. https://doi.org/10.1016/j.bbadis.2008.02.008

    Article  CAS  Google Scholar 

  • Koeller, D. M., Woontner, M., Crnic, L. S., Kleinschmidt-Demasters, B., Stephens, J., Hunt, E. L., & Goodman, S. I. (2002). Biochemical, pathologic and behavioral analysis of a mouse model of glutaric acidemia type 1. Human Molecular Genetics, 11, 347–357. https://doi.org/10.1093/hmg/11.4.347

    Article  CAS  Google Scholar 

  • Kölker, S., Ahlemeyer, B., Krieglstein, J., & Hoffmann, G. F. (1999). 3-Hydroxyglutaric and glutaric acids are neurotoxic through NMDA receptors in vitro. Journal of Inherited Metabolic Disease, 22, 259–262. https://doi.org/10.1023/a:1005577920954

    Article  Google Scholar 

  • Kölker, S., Koeller, D. M., Sauer, S., Hörster, F., Schwab, M. A., Hoffmann, G. F., Ullrich, K., & Okun, J. G. (2004). Excitotoxicity and bioenergetics in glutaryl-CoA dehydrogenase deficiency. Journal of Inherited Metabolic Disease, 27, 805–812. https://doi.org/10.1023/B:BOLI.0000045762.37248.28

    Article  Google Scholar 

  • Korman, S. H., Waterham, H. R., Gutman, A., Jakobs, C., & Wanders, R. J. A. (2005). Novel metabolic and molecular findings in hepatic carnitine palmitoyltransferase I deficiency. Molecular Genetics and Metabolism, 86, 337–343. https://doi.org/10.1016/j.ymgme.2005.07.022

    Article  CAS  Google Scholar 

  • Külkens, S., Harting, I., Sauer, S., Zschocke, J., Hoffmann, G. F., Gruber, S., Bodamer, O. A., & Kölker, S. (2005). Late-onset neurologic disease in glutaryl-CoA dehydrogenase deficiency. Neurology, 64, 2142–2144. https://doi.org/10.1212/01.WNL.0000167428.12417.B2

    Article  Google Scholar 

  • Lamp, J., Keyser, B., Koeller, D. M., Ullrich, K., Braulke, T., & Mühlhausen, C. (2011). Glutaric aciduria type 1 metabolites impair the succinate transport from astrocytic to neuronal cells. Journal of Biological Chemistry, 286, 17777–17784. https://doi.org/10.1074/jbc.M111.232744

    Article  CAS  Google Scholar 

  • Larson, A., & Goodman, S. (2019). Glutaric acidemia type 1 summary genetic counseling. In M. P. Adam, H. H. Ardinger, R. A. Pagon, S. E. Wallace, L. J. H. Bean, K. Stephens, & A. Amemiya (Eds.), GeneReviews® [Internet] (pp. 1–27). University of Washington.

    Google Scholar 

  • Latini, A., Borba Rosa, R., Scussiato, K., Llesuy, S., Belló-Klein, A., & Wajner, M. (2002). 3-Hydroxyglutaric acid induces oxidative stress and decreases the antioxidant defenses in cerebral cortex of young rats. Brain Research, 956, 367–373. https://doi.org/10.1016/S0006-8993(02)03573-4

    Article  CAS  Google Scholar 

  • Latini, A., Scussiato, K., Leipnitz, G., Dutra-Filho, C. S., & Wajner, M. (2005a). Promotion of oxidative stress by 3-hydroxyglutaric acid in rat striatum. Journal of Inherited Metabolic Disease, 28, 57–67. https://doi.org/10.1007/s10545-005-3677-7

    Article  CAS  Google Scholar 

  • Latini, A., Rodriguez, M., Borba Rosa, R., Scussiato, K., Leipnitz, G., Reis De Assis, D., Da Costa Ferreira, G., Funchal, C., Jacques-Silva, M. C., Buzin, L., Giugliani, R., Cassina, A., Radi, R., & Wajner, M. (2005b). 3-Hydroxyglutaric acid moderately impairs energy metabolism in brain of young rats. Neuroscience, 135, 111–120. https://doi.org/10.1016/j.neuroscience.2005.05.013

    Article  CAS  Google Scholar 

  • Leibel, R. L., Shih, V. E., Goodman, S. I., Bauman, M. L., McCabe, E. R. B., Zwerdling, R. G., Bergman, I., & Costello, C. (1980). Glutaric acidemia: A metabolic disorder causing progressive choreoathetosis. Neurology, 30, 1163–1168. https://doi.org/10.1212/wnl.30.11.1163

    Article  CAS  Google Scholar 

  • Lund, T. M., Christensen, E., Kristensen, A. S., Schousboe, A., & Lund, A. M. (2004). On the neurotoxicity of glutaric, 3-hydroxyglutaric, and trans-glutaconic acids in glutaric acidemia type 1. Journal of Neuroscience Research, 77, 143–147. https://doi.org/10.1002/jnr.20136

    Article  CAS  Google Scholar 

  • Mühlhausen, C., Ergün, S., Strauss, K. A., Koeller, D. M., Crnic, L., Woontner, M., Goodman, S. I., Ullrich, K., & Braulke, T. (2004). Vascular dysfunction as an additional pathomechanism in glutaric aciduria type I. Journal of Inherited Metabolic Disease, 27, 829–834. https://doi.org/10.1023/B:BOLI.0000045766.98718.d6

    Article  Google Scholar 

  • Mühlhausen, C., Ott, N., Chalajour, F., Tilki, D., Freudenberg, F., Shahhossini, M., Thiem, J., Ullrich, K., Braulke, T., & Ergün, S. (2006). Endothelial effects of 3-hydroxyglutaric acid: Implications for glutaric aciduria type I. Pediatric Research, 59, 196–202. https://doi.org/10.1203/01.pdr.0000197313.44265.cb

    Article  Google Scholar 

  • Mühlhausen, C., Burckhardt, B. C., Hagos, Y., Burckhardt, G., Keyser, B., Lukacs, Z., Ullrich, K., & Braulke, T. (2008). Membrane translocation of glutaric acid and its derivatives. Journal of Inherited Metabolic Disease, 31, 188–193. https://doi.org/10.1007/s10545-008-0825-x

    Article  CAS  Google Scholar 

  • Olivera, S., Fernandez, A., Latini, A., Rosillo, J. C., Casanova, G., Wajner, M., Cassina, P., & Barbeito, L. (2008). Astrocytic proliferation and mitochondrial dysfunction induced by accumulated glutaric acidemia I (GAI) metabolites: Possible implications for GAI pathogenesis. Neurobiology of Disease, 32, 528–534. https://doi.org/10.1016/j.nbd.2008.09.011

    Article  CAS  Google Scholar 

  • Pajor, A. M. (2014). Sodium-coupled dicarboxylate and citrate transporters from the SLC13 family. Pflugers Archiv European Journal of Physiology, 466, 119–130. https://doi.org/10.1007/s00424-013-1369-y

    Article  CAS  Google Scholar 

  • Peters, V., Morath, M., Mack, M., Liesert, M., Buckel, W., Hoffmann, G. F., Vockley, J., Ghisla, S., & Zschocke, J. (2019). Formation of 3-hydroxyglutaric acid in glutaric aciduria type I: In vitro participation of medium chain acyl-CoA dehydrogenase. JIMD Reports, 47, 30–34. https://doi.org/10.1002/jmd2.12026

    Article  Google Scholar 

  • Pitt, J., Carpenter, K., Wilcken, B., & Boneh, A. (2002). 3-Hydroxyglutarate excretion is increased in ketotic patients: Implications for glutaryl-CoA dehydrogenase deficiency testing. Journal of Inherited Metabolic Disease, 25, 83–88. https://doi.org/10.1023/A:1015654608166

    Article  CAS  Google Scholar 

  • Pöge, A. P., Autschbach, F., Korall, H., Trefz, F. K., & Mayatepek, E. (1997). Early clinical manifestation of glutaric aciduria type I and nephrotic syndrome during the first months of life. Acta Paediatrica, International Journal of Paediatrics, 86, 1144–1147. https://doi.org/10.1111/j.1651-2227.1997.tb14827.x

    Article  Google Scholar 

  • Quincozes-Santos, A., Rosa, R. B., Leipnitz, G., De Souza, D. F., Seminotti, B., Wajner, M., & Gonçalves, C. A. (2010). Induction of S100B secretion in C6 astroglial cells by the major metabolites accumulating in glutaric acidemia type I. Metabolic Brain Disease, 25, 191–198. https://doi.org/10.1007/s11011-010-9203-0

    Article  CAS  Google Scholar 

  • Rizwan, A. N., & Burckhardt, G. (2007). Organic anion transporters of the SLC22 family: Biopharmaceutical, physiological, and pathological roles. Pharmaceutical Research, 24, 450–470. https://doi.org/10.1007/s11095-006-9181-4

    Article  CAS  Google Scholar 

  • Rosa, R. B., Schwarzbold, C., Dalcin, K. B., Ghisleni, G. C., Ribeiro, C. A. J., Moretto, M. B., Frizzo, M. E. S., Hoffmann, G. F., Souza, D. O., & Wajner, M. (2004). Evidence that 3-hydroxyglutaric acid interacts with NMDA receptors in synaptic plasma membranes from cerebral cortex of young rats. Neurochemistry International, 45, 1087–1094. https://doi.org/10.1016/j.neuint.2004.05.001

    Article  CAS  Google Scholar 

  • Sauer, S. W., Opp, S., Mahringer, A., Kamiński, M. M., Thiel, C., Okun, J. G., Fricker, G., Morath, M. A., & Kölker, S. (2010). Glutaric aciduria type I and methylmalonic aciduria: Simulation of cerebral import and export of accumulating neurotoxic dicarboxylic acids in in vitro models of the blood-brain barrier and the choroid plexus. Biochimica et Biophysica Acta – Molecular Basis of Disease, 1802, 552–560. https://doi.org/10.1016/j.bbadis.2010.03.003

    Article  CAS  Google Scholar 

  • Schor, D. S. M., Verhoeven, N. M., Struys, E. A., Ten Brink, H. J., & Jakobs, C. (2002). Quantification of 3-hydroxyglutaric acid in urine, plasma, cerebrospinal fluid and amniotic fluid by stable-isotope dilution negative chemical ionization gas chromatography-mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 780, 199–204. https://doi.org/10.1016/S1570-0232(02)00406-3

    Article  CAS  Google Scholar 

  • Shigematsu, Y., Hata, I., Tanaka, Y., Tajima, G., Sakura, N., Naito, E., & Yorifuji, T. (2005). Stable-isotope dilution gas chromatography-mass spectrometric measurement of 3-hydroxyglutaric acid, glutaric acid and related metabolites in body fluids of patients with glutaric aciduria type 1 found in newborn screening. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 823, 7–12. https://doi.org/10.1016/j.jchromb.2005.03.031

    Article  CAS  Google Scholar 

  • Stellmer, F., Keyser, B., Burckhardt, B. C., Koepsell, H., Streichert, T., Glatzel, M., Jabs, S., Thiem, J., Herdering, W., Koeller, D. M., Goodman, S. I., Lukacs, Z., Ullrich, K., Burckhardt, G., Braulke, T., & Mühlhausen, C. (2007). 3-Hydroxyglutaric acid is transported via the sodium-dependent dicarboxylate transporter NaDC3. Journal of Molecular Medicine, 85, 763–770. https://doi.org/10.1007/s00109-007-0174-5

    Article  CAS  Google Scholar 

  • Strauss, K. A., & Morton, D. H. (2003). Type I glutaric aciduria, part 2: A model of acute striatal necrosis. American Journal of Medical Genetics – Seminars in Medical Genetics, 121, 53–70. https://doi.org/10.1002/ajmg.c.20008

    Article  Google Scholar 

  • Strauss, K. A., Puffenberger, E. G., Robinson, D. L., & Morton, D. H. (2003). Type I glutaric aciduria, part 1: Natural history of 77 patients. American Journal of Medical Genetics – Seminars in Medical Genetics, 121, 38–52. https://doi.org/10.1002/ajmg.c.20007

    Article  Google Scholar 

  • Traiffort, E., Kassoussi, A., Zahaf, A., & Laouarem, Y. (2020). Astrocytes and microglia as major players of myelin production in normal and pathological conditions. Frontiers in Cellular Neuroscience, 14, 79. https://doi.org/10.3389/fncel.2020.00079

    Article  CAS  Google Scholar 

  • Traynelis, S. F., Wollmuth, L. P., McBain, C. J., Menniti, F. S., Vance, K. M., Ogden, K. K., Hansen, K. B., Yuan, H., Myers, S. J., & Dingledine, R. (2010). Glutamate receptor ion channels: Structure, regulation, and function. Pharmacological Reviews, 62, 405–496. https://doi.org/10.1124/pr.109.002451

    Article  CAS  Google Scholar 

  • Wajner, M. (2019). Neurological manifestations of organic acidurias. Nature Reviews Neurology, 15, 253–271. https://doi.org/10.1038/s41582-019-0161-9

    Article  Google Scholar 

  • Zinnanti, W. J., Lazovic, J., Wolpert, E. B., Antonetti, D. A., Smith, M. B., Connor, J. R., Woontner, M., Goodman, S. I., & Cheng, K. C. (2006). A diet-induced mouse model for glutaric aciduria type I. Brain, 129, 899–910. https://doi.org/10.1093/brain/awl009

    Article  Google Scholar 

  • Zinnanti, W. J., Jacobs, R. E., Cheng, K. C., Zinnanti, W. J., Lazovic, J., Housman, C., Lanoue, K., Callaghan, J. P. O., Simpson, I., Woontner, M., Goodman, S. I., Connor, J. R., Jacobs, R. E., & Cheng, K. C. (2007). Mechanism of age-dependent susceptibility and novel treatment strategy in glutaric acidemia type I. The Journal of Clinical Investigation, 117, 3258–3270. https://doi.org/10.1172/JCI31617.3258

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moacir Wajner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Seminotti, B., Latini, A., Amaral, A.U., Leipnitz, G., Wajner, M. (2022). 3-Hydroxyglutaric Acid as a Neurotoxin. In: Kostrzewa, R.M. (eds) Handbook of Neurotoxicity. Springer, Cham. https://doi.org/10.1007/978-3-031-15080-7_229

Download citation

Publish with us

Policies and ethics