Skip to main content
Log in

Human and mouse neuroinflammation markers in Niemann-Pick disease, type C1

  • Original Article
  • Published:
Journal of Inherited Metabolic Disease

Abstract

Niemann-Pick disease, type C1 (NPC1) is an autosomal recessive lipid storage disorder in which a pathological cascade, including neuroinflammation occurs. While data demonstrating neuroinflammation is prevalent in mouse models, data from NPC1 patients is lacking. The current study focuses on identifying potential markers of neuroinflammation in NPC1 from both the Npc1 mouse model and NPC1 patients. We identified in the mouse model significant changes in expression of genes associated with inflammation and compared these results to the pattern of expression in human cortex and cerebellar tissue. From gene expression array analysis, complement 3 (C3) was increased in mouse and human post-mortem NPC1 brain tissues. We also characterized protein levels of inflammatory markers in cerebrospinal fluid (CSF) from NPC1 patients and controls. We found increased levels of interleukin 3, chemokine (C-X-C motif) ligand 5, interleukin 16 and chemokine ligand 3 (CCL3), and decreased levels of interleukin 4, 10, 13 and 12p40 in CSF from NPC1 patients. CSF markers were evaluated with respect to phenotypic severity. Miglustat treatment in NPC1 patients slightly decreased IL-3, IL-10 and IL-13 CSF levels; however, further studies are needed to establish a strong effect of miglustat on inflammation markers. The identification of inflammatory markers with altered levels in the cerebrospinal fluid of NPC1 patients may provide a means to follow secondary events in NPC1 disease during therapeutic trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aqul A, Liu B, Ramirez CM et al (2011) Unesterified cholesterol accumulation in late endosomes/lysosomes causes neurodegeneration and is prevented by driving cholesterol export from this compartment. J Neurosci 31(25):9404–9413

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baudry M, Yao Y, Simmons D, Liu J, Bi X (2003) Postnatal development of inflammation in a murine model of Niemann-Pick type C disease: immunohistochemical observations of microglia and astroglia. Exp Neurol 184(2):887–903

    Article  CAS  PubMed  Google Scholar 

  • Carstea ED, Morris JA, Coleman KG et al (1997) Niemann-Pick C1 disease gene: homology to mediators of cholesterol homeostasis. Science 277(5323):228–231

    Article  CAS  PubMed  Google Scholar 

  • Chabot S, Williams G, Hamilton M, Sutherland G, Yong VW (1999) Mechanisms of IL-10 production in human microglia-T cell interaction. J Immunol 162(11):6819–6828

    CAS  PubMed  Google Scholar 

  • Davidson CD, Ali NF, Micsenyi MC et al (2009) Chronic cyclodextrin treatment of murine Niemann-Pick C disease ameliorates neuronal cholesterol and glycosphingolipid storage and disease progression. PLoS One 4(9):e6951

    Article  PubMed Central  PubMed  Google Scholar 

  • Eng LF, Ghirnikar RS, Lee YL (2000) Glial fibrillary acidic protein: GFAP-thirty-one years (1969–2000). Neurochem Res 25(9–10):1439–1451

    Article  CAS  PubMed  Google Scholar 

  • Fu R, Yanjanin NM, Bianconi S, Pavan WJ, Porter FD (2010) Oxidative stress in Niemann-Pick disease, type C. Mol Genet Metab 101(2–3):214–218

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ganser GH, Hewett P (2010) An accurate substitution method for analyzing censored data. J Occup Environ Hyg 7(4):233–244

    Article  PubMed  Google Scholar 

  • Graeber MB, Li W, Rodriguez ML (2011) Role of microglia in CNS inflammation. FEBS Lett 585(23):3798–3805

    Article  CAS  PubMed  Google Scholar 

  • Henry CJ, Huang Y, Wynne AM, Godbout JP (2009) Peripheral lipopolysaccharide (LPS) challenge promotes microglial hyperactivity in aged mice that is associated with exaggerated induction of both pro-inflammatory IL-1beta and anti-inflammatory IL-10 cytokines. Brain Behav Immun 23(3):309–317

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Klein A, Maldonado C, Vargas LM et al (2011) Oxidative stress activates the c-Abl/p73 proapoptotic pathway in Niemann-Pick type C neurons. Neurobiol Dis 41(1):209–218

    Article  CAS  PubMed  Google Scholar 

  • Kunisch E, Fuhrmann R, Roth A, Winter R, Lungershausen W, Kinne RW (2004) Macrophage specificity of three anti-CD68 monoclonal antibodies (KP1, EBM11, and PGM1) widely used for immunohistochemistry and flow cytometry. Ann Rheum Dis 63(7):774–784

    Article  CAS  PubMed  Google Scholar 

  • Langmade SJ, Gale SE, Frolov A et al (2006) Pregnane X receptor (PXR) activation: a mechanism for neuroprotection in a mouse model of Niemann-Pick C disease. Proc Natl Acad Sci USA 103(37):13807–13812

    Article  CAS  PubMed  Google Scholar 

  • Li H, Repa JJ, Valasek MA et al (2005) Molecular, anatomical, and biochemical events associated with neurodegeneration in mice with Niemann-Pick type C disease. J Neuropathol Exp Neurol 64(4):323–333

    CAS  PubMed  Google Scholar 

  • Liao G, Wen Z, Irizarry K et al (2010) Abnormal gene expression in cerebellum of Npc1−/− mice during postnatal development. Brain Res 1325:128–140

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Ramirez CM, Miller AM, Repa JJ, Turley SD, Dietschy JM (2010) Cyclodextrin overcomes the transport defect in nearly every organ of NPC1 mice leading to excretion of sequestered cholesterol as bile acid. J Lipid Res 51(5):933–944

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Turley SD, Burns DK, Miller AM, Repa JJ, Dietschy JM (2009) Reversal of defective lysosomal transport in NPC disease ameliorates liver dysfunction and neurodegeneration in the npc1−/− mouse. Proc Natl Acad Sci USA 106(7):2377–2382

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Loftus SK, Morris JA, Carstea ED et al (1997) Murine model of Niemann-Pick C disease: mutation in a cholesterol homeostasis gene. Science 277(5323):232–235

    Article  CAS  PubMed  Google Scholar 

  • Lopez ME, Klein AD, Hong J, Dimbil UJ, Scott MP (2012a) Neuronal and epithelial cell rescue resolves chronic systemic inflammation in the lipid storage disorder Niemann-Pick C. Hum Mol Genet 21(13):2946–2960

    Article  CAS  PubMed  Google Scholar 

  • Lopez ME, Klein AD, Scott MP (2012b) Complement is dispensable for neurodegeneration in Niemann-Pick disease type C. J Neuroinflamm 9(1):216

    Article  CAS  Google Scholar 

  • Love S, Bridges LR, Case CP (1995) Neurofibrillary tangles in Niemann-Pick disease type C. Brain 118(Pt 1):119–129

    Article  PubMed  Google Scholar 

  • Marin-Teva JL, Cuadros MA, Martin-Oliva D, Navascues J (2012) Microglia and neuronal cell death. Neuron Glia Biol 7(1):25-40.

    Article  Google Scholar 

  • Ong WY, Kumar U, Switzer RC et al (2001) Neurodegeneration in Niemann-Pick type C disease mice. Exp Brain Res 141(2):218–231

    Article  CAS  PubMed  Google Scholar 

  • Park KW, Lee DY, Joe EH, Kim SU, Jin BK (2005) Neuroprotective role of microglia expressing interleukin-4. J Neurosci Res 81(3):397–402

    Article  CAS  PubMed  Google Scholar 

  • Parra J, Klein AD, Castro J et al (2011) Npc1 deficiency in the C57BL/6J genetic background enhances Niemann-Pick disease type C spleen pathology. Biochem Biophys Res Commun 413(3):400–406

    Article  CAS  PubMed  Google Scholar 

  • Patterson MC, Vecchio D, Jacklin E et al (2010) Long-term miglustat therapy in children with Niemann-Pick disease type C. J Child Neurol 25(3):300–305

    Article  PubMed  Google Scholar 

  • Patterson MC, Vecchio D, Prady H, Abel L, Wraith JE (2007) Miglustat for treatment of Niemann-Pick C disease: a randomised controlled study. Lancet Neurol 6(9):765–772

    Article  CAS  PubMed  Google Scholar 

  • Pentchev PG, Comly ME, Kruth HS et al (1987) Group C Niemann-Pick disease: faulty regulation of low-density lipoprotein uptake and cholesterol storage in cultured fibroblasts. FASEB J 1(1):40–45

    CAS  PubMed  Google Scholar 

  • Pineda M, Wraith JE, Mengel E et al (2009) Miglustat in patients with Niemann-Pick disease Type C (NP-C): a multicenter observational retrospective cohort study. Mol Genet Metab 98(3):243–249

    Article  CAS  PubMed  Google Scholar 

  • Porter FD, Scherrer DE, Lanier MH et al (2010) Cholesterol oxidation products are sensitive and specific blood-based biomarkers for Niemann-Pick C1 disease. Sci Trans Med 2(56):56ra81

    Article  Google Scholar 

  • Pressey SN, Smith DA, Wong AM, Platt FM, Cooper JD (2012) Early glial activation, synaptic changes and axonal pathology in the thalamocortical system of Niemann-Pick type C1 mice. Neurobiol Dis 45(3):1086–1100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ramirez CM, Liu B, Taylor AM et al (2010) Weekly cyclodextrin administration normalizes cholesterol metabolism in nearly every organ of the Niemann-Pick type C1 mouse and markedly prolongs life. Pediatr Res 68(4):309–315

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ransohoff RM, Brown MA (2012) Innate immunity in the central nervous system. J Clin Invest 122(4):1164–1171

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reddy JV, Ganley IG, Pfeffer SR (2006) Clues to neuro-degeneration in Niemann-Pick type C disease from global gene expression profiling. PLoS One 1:e19

    Article  PubMed Central  PubMed  Google Scholar 

  • Repa JJ, Li H, Frank-Cannon TC et al (2007) Liver X receptor activation enhances cholesterol loss from the brain, decreases neuroinflammation, and increases survival of the NPC1 mouse. J Neurosci 27(52):14470–14480

    Article  CAS  PubMed  Google Scholar 

  • Rubio-Perez JM, Morillas-Ruiz JM (2012) A review: inflammatory process in Alzheimer’s disease, role of cytokines. SciWorld J 2012:756357

    Google Scholar 

  • Sarna JR, Larouche M, Marzban H, Sillitoe RV, Rancourt DE, Hawkes R (2003) Patterned Purkinje cell degeneration in mouse models of Niemann-Pick type C disease. J Comp Neurol 456(3):279–291

    Article  PubMed  Google Scholar 

  • Smith D, Wallom KL, Williams IM, Jeyakumar M, Platt FM (2009) Beneficial effects of anti-inflammatory therapy in a mouse model of Niemann-Pick disease type C1. Neurobiol Dis 36(2):242–251

    Article  CAS  PubMed  Google Scholar 

  • Stein VM, Crooks A, Ding W et al (2012) Miglustat improves purkinje cell survival and alters microglial phenotype in feline Niemann-Pick disease type C. J Neuropathol Exp Neurol 71(5):434–448

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Suk K (2010) Combined analysis of the glia secretome and the CSF proteome: neuroinflammation and novel biomarkers. Expert Rev proteomics 7(2):263–274

    Article  CAS  PubMed  Google Scholar 

  • Suzuki K, Parker CC, Pentchev PG et al (1995) Neurofibrillary tangles in Niemann-Pick disease type C. Acta Neuropathol 89(3):227–238

    Article  CAS  PubMed  Google Scholar 

  • Vanier MT (2010) Niemann-Pick disease type C. Orphanet J Rare Dis 5:16

    Article  PubMed Central  PubMed  Google Scholar 

  • Vanier MT, Millat G (2003) Niemann-Pick disease type C. Clin Genet 64(4):269–281

    Article  CAS  PubMed  Google Scholar 

  • Vazquez MC, Del Pozo T, Robledo FA et al (2011) Alteration of gene expression profile in niemann-pick type C mice correlates with tissue damage and oxidative stress. PLoS One 6(12):e28777

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Veerhuis R, Nielsen HM, Tenner AJ (2011) Complement in the brain. Mol Immunol 48(14):1592–1603

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ward S, O’Donnell P, Fernandez S, Vite CH (2010) 2-hydroxypropyl-beta-cyclodextrin raises hearing threshold in normal cats and in cats with Niemann-Pick type C disease. Pediatr Res 68(1):52–56

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wraith JE, Vecchio D, Jacklin E et al (2010) Miglustat in adult and juvenile patients with Niemann-Pick disease type C: long-term data from a clinical trial. Mol Genet Metab 99(4):351–357

    Article  CAS  PubMed  Google Scholar 

  • Wu YP, Mizukami H, Matsuda J, Saito Y, Proia RL, Suzuki K (2005) Apoptosis accompanied by up-regulation of TNF-alpha death pathway genes in the brain of Niemann-Pick type C disease. Mol Genet Metab 84(1):9–17

    Article  CAS  PubMed  Google Scholar 

  • Wu YP, Proia RL (2004) Deletion of macrophage-inflammatory protein 1 alpha retards neurodegeneration in Sandhoff disease mice. Proc Natl Acad Sci USA 101(22):8425–8430

    Article  CAS  PubMed  Google Scholar 

  • Yanjanin NM, Velez JI, Gropman A et al (2010) Linear clinical progression, independent of age of onset, in Niemann-Pick disease, type C. Am J Med Genet B Neuropsychiatr Genet 153B(1):132–140

    PubMed Central  PubMed  Google Scholar 

  • Zampieri S, Mellon SH, Butters TD et al (2009) Oxidative stress in NPC1 deficient cells: protective effect of allopregnanolone. J Cell Mol Med 13(9B):3786–3796

    Article  PubMed Central  PubMed  Google Scholar 

  • Zervas M, Dobrenis K, Walkley SU (2001) Neurons in Niemann-Pick disease type C accumulate gangliosides as well as unesterified cholesterol and undergo dendritic and axonal alterations. J Neuropathol Exp Neurol 60(1):49–64

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Human tissue was obtained from the NICHD Brain and Tissue Bank for Developmental Disorders at the University of Maryland, Baltimore, MD. This study was supported by the intramural research program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development and by the National Institute of Neurological Disorders and Stroke (R01 NS063967 to APL). Support for this work was also provided by Bench-to-Bedside awards from the NIH Clinical Center and Office of Rare Diseases. Research was supported in part by a grant from the National Niemann-Pick Disease Foundation to SMC. NMY was supported by the Ara Parseghian Medical Research Foundation (APMRF). APMRF also supported the collection of control CSF samples which were facilitated by the efforts of Dr. Cyndi Tifft. The authors would also like to acknowledge the contribution of the caretakers, the patients and their families, who participated in this study.

Conflict of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Forbes D. Porter.

Additional information

Communicated by: Maurizio Scarpa

Stephanie M. Cologna and Celine V. M. Cluzeau contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 8.72 mb)

ESM 2

(XLSX 32 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cologna, S.M., Cluzeau, C.V.M., Yanjanin, N.M. et al. Human and mouse neuroinflammation markers in Niemann-Pick disease, type C1. J Inherit Metab Dis 37, 83–92 (2014). https://doi.org/10.1007/s10545-013-9610-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-013-9610-6

Keywords

Navigation