Skip to main content
Log in

Early cardiovascular remodelling in Fabry disease

  • Original Article
  • Published:
Journal of Inherited Metabolic Disease

Abstract

Aims

Fabry disease (FD) is a rare X-linked genetic disorder caused by the deficiency or absent activity of lysosomal α-galactosidase A. Cardiovascular remodelling is a hallmark of FD. The present study aimed to comprehensively evaluate the cardiac, vascular and microvascular status in a population of patients with genetic mutations for FD without left ventricular hypertrophy (LVH).

Methods and results

This study includes subjects carrying genetic mutations for FD (Fabry disease mutation-carrier, FDMC) without LVH (n = 19). A group of control subjects (n = 19) matched for age, sex, body mass index and cardiovascular risk factors were also included. All subjects underwent echocardiography, carotid ultrasound scan, endothelial flow-mediated dilatation (FMD) and nailfold capillaroscopy (NFC) assessment. When compared to the subjects in the control group, FDMC patients showed significantly lower mean values of systolic myocardial velocity (7.33 ± 1.28 vs. 10.08 ± 1.63 cm/s, p < 0.0001), longitudinal systolic strain (−18.07 ± 1.72 vs. −21.15 ± 2.22 %, p < 0.0001), significantly higher E/E’ mean values (7.15 ± 1.54 vs. 5.98 ± 1.27, p = 0.016) and intima-media thickness mean values (0.80 ± 0.20 vs. 0.61 ± 0.19 mm, p = 0.005), significantly lower FMD (8.3 ± 4.6 vs. 12.2 ± 5.0 %, p = 0.02), more atypical capillaries and irregular NFC architecture in FDMC than control subjects (52.6 vs. 0 %, p < 0.0001; 78.9 vs. 36.8 %, p = 0.02 respectively).

Conclusions

FD progressively involves cardiac, macrovascular and microvascular systems in an early stage. These features are present even in asymptomatic mutation carriers without LVH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altarescu G, Moore DF, Pursley R et al (2001) Enhanced endothelium-dependent vasodilation in Fabry disease. Stroke 32:1559–1562

    Article  CAS  PubMed  Google Scholar 

  • Barbey F, Brakch N, Linhart A et al (2006a) Cardiac and vascular hypertrophy in Fabry disease: evidence for a new mechanism independent of blood pressure and glycosphingolipid deposition. Arterioscler Thromb Vasc Biol 26:839–844

    Article  CAS  PubMed  Google Scholar 

  • Barbey F, Brakch N, Linhart A et al (2006b) Increased carotid intima-media thickness in the absence of atherosclerotic plaques in an adult population with Fabry disease. Acta Paediatr Suppl 95:63–68

    Article  PubMed  Google Scholar 

  • Bollinger A, Fagrell B (1990) Clinical capillaroscopy. A guide to its use in clinical research and practice, Toronto. Hogrete & Huber, Toronto, pp 1–158

    Google Scholar 

  • Boutouyrie P, Laurent S, Laloux B, Lidove O, Grunfeld JP, Germain DP (2002) Arterial remodelling in Fabry disease. Acta Paediatr 91(suppl 439):62–66

    Article  CAS  Google Scholar 

  • Chimenti C, Hamdani N, Boontje NM et al (2008) Myofilament degradation and dysfunction of human cardiomyocytes in Fabry disease. Am J Pathol 172:1482–1490

    Article  CAS  PubMed  Google Scholar 

  • Corretti MC, Anderson TJ, Benjamin EJ, International Brachial Artery Reactivity Task Force et al (2002) Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: a report of the International Brachial Artery Reactivity Task Force. J Am Coll Cardiol 39:257–265

    Article  PubMed  Google Scholar 

  • Desnick RJ, Blieden LC, Sharp HL, Hofschire PJ, Moller JH (1976) Cardiac valvular anomalies in Fabry disease. Clinical, morphologic, and biochemical studies. Circulation 54:818–825

    Article  CAS  PubMed  Google Scholar 

  • Devereux RB, Reicheck N (1997) Echocardiographic determination of left ventricular mass in man: anatomic validation of the method. Circulation 55:613–619

    Article  Google Scholar 

  • Dütsch M, Marthol H, Stemper B, Brys M, Haendl T, Hilz MJ (2002) Small fiber dysfunction predominates in Fabry neuropathy. J Clin Neurophysiol 19:575–586

    Article  PubMed  Google Scholar 

  • Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376

    Article  CAS  PubMed  Google Scholar 

  • Galderisi M, Henein MY, D’hooge J, European Association of Echocardiography et al (2011) Recommendations of the European Association of Echocardiography: how to use echo-Doppler in clinical trials: different modalities for different purposes. Eur J Echocardiogr 12:339–353

    Article  PubMed  Google Scholar 

  • Germain DP (2010) Fabry disease. Orphanet J Rare Dis 5:30

    Article  PubMed Central  PubMed  Google Scholar 

  • Kalliokoski RJ, Kalliokoski KK, Penttinen M et al (2006) Structural and functional changes in peripheral vasculature of Fabry patients. J Inherit Metab Dis 29:660–666

    Article  PubMed  Google Scholar 

  • Lakoumentas JA, Panou FK, Kotseroglou VK, Aggeli KI, Harbis PK (2005) The Tei index of myocardial performance: applications in cardiology. Hellenic J Cardiol 46:52–58

    PubMed  Google Scholar 

  • Linhart A, Palecek T, Bultas J et al (2000) New insights in cardiac structural changes in patients with Fabry’s disease. Am Heart J 139:1101–1108

    Article  CAS  PubMed  Google Scholar 

  • Linthorst GE, Poorthuis BJ, Hollak CE (2008) Enzyme activity for determination of presence of Fabry disease in women results in 40% false-negative results. J Am Coll Cardiol 51:2082–2083

    Article  PubMed  Google Scholar 

  • Lonzetti LS, Joyal F, Raynauld JP et al (2001) Updating the American College of Rheumatology preliminary classification criteria for systemic sclerosis: addition of severe nailfold capillaroscopy abnormalities markedly increases the sensitivity for limited scleroderma. Arthritis Rheum 44:735–736

    Article  CAS  PubMed  Google Scholar 

  • Maier EM, Osterrieder S, Whybra C et al (2006) Disease manifestations and x inactivation in heterozygous females with Fabry disease. Acta Paediatr 95:30–38

    Article  Google Scholar 

  • Nagueh SF, Middleton KJ, Kopelen HA, Zoghbi WA, Quiñones MA (1997) Doppler tissue imaging: a noninvasive technique for evaluation of left ventricular relaxation and estimation of filling pressures. J Am Coll Cardiol 30:1527–1533

    Article  CAS  PubMed  Google Scholar 

  • Nagueh SF, Appleton CP, Gillebert TC et al (2009) Recommendations for the evaluation of left ventricular diastolic function by echocardiography. Eur J Echocardiogr 10:165–193

    Article  PubMed  Google Scholar 

  • Pieroni M, Chimenti C, Ricci R, Sale P, Russo MA, Frustaci A (2003) Early detection of Fabry cardiomyopathy by tissue Doppler imaging. Circulation 107:1978–1984

    Article  PubMed  Google Scholar 

  • Puccio D, Coppola G, Corrado E et al (2005) Non invasive evaluation of endothelial function in patients with Anderson-Fabry disease. Int Angiol 24:295–299

    CAS  PubMed  Google Scholar 

  • Seino Y, Vyden JK, Philipart M, Rose HB, Nagasawa K (1983) Peripheral hemodynamics in patients with Fabry’s disease. Am Heart J 105:783–787

    Article  CAS  PubMed  Google Scholar 

  • Stein JH, Korcarz CE, Hurst RT, American Society of Echocardiography Carotid Intima-Media Thickness Task Force et al (2008) Use of carotid ultrasound to identify subclinical vascular disease and evaluate cardiovascular disease risk: a consensus statement from the American Society of Echocardiography Carotid Intima-Media Thickness Task Force. Endorsed by the Society for Vascular Medicine. J Am Soc Echocardiogr 21:93–111

    Article  PubMed  Google Scholar 

  • Stemper B, Hilz MJ (2003) Postischemic cutaneous hyperperfusion in the presence of forearm hypoperfusion suggests sympathetic vasomotor dysfunction in Fabry disease. J Neurol 250:970–976

    Article  PubMed  Google Scholar 

  • Toro R, Perez-Isla L, Doxastaquis G et al (2009) Clinical usefulness of tissue Doppler imaging in predicting preclinical Fabry cardiomyopathy. Int J Cardiol 32:38–44

    Article  Google Scholar 

  • Wasik JS, Simon RW, Meier T, Steinmann B, Amann-Vesti BR (2009) Nailfold capillaroscopy: specific features in Fabry disease. Clin Hemorheol Microcirc 42:99–106

    PubMed  Google Scholar 

  • Zamorano J, Serra V, Pérez de Isla L et al (2011) Usefulness of tissue Doppler on early detection of cardiac disease in Fabry patients and potential role of enzyme replacement therapy (ERT) for avoiding progression of disease. Eur J Echocardiogr 12:671–677

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Caren Conticello for her assistance in revision of the English text.

Funding sources

No extramural funding was used to support this work.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ines Monte.

Additional information

Communicated by: Ed Wraith

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costanzo, L., Buccheri, S., Capranzano, P. et al. Early cardiovascular remodelling in Fabry disease. J Inherit Metab Dis 37, 109–116 (2014). https://doi.org/10.1007/s10545-013-9607-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-013-9607-1

Keywords

Navigation