Skip to main content
Log in

Effects of hypoglycaemia on neuronal metabolism in the adult brain: role of alternative substrates to glucose

  • Original Article
  • Published:
Journal of Inherited Metabolic Disease

Abstract

Hypoglycaemia is characterized by decreased blood glucose levels and is associated with different pathologies (e.g. diabetes, inborn errors of metabolism). Depending on its severity, it might affect cognitive functions, including impaired judgment and decreased memory capacity, which have been linked to alterations of brain energy metabolism. Glucose is the major cerebral energy substrate in the adult brain and supports the complex metabolic interactions between neurons and astrocytes, which are essential for synaptic activity. Therefore, hypoglycaemia disturbs cerebral metabolism and, consequently, neuronal function. Despite the high vulnerability of neurons to hypoglycaemia, important neurochemical changes enabling these cells to prolong their resistance to hypoglycaemia have been described. This review aims at providing an overview over the main metabolic effects of hypoglycaemia on neurons, covering in vitro and in vivo findings. Recent studies provided evidence that non-glucose substrates including pyruvate, glycogen, ketone bodies, glutamate, glutamine, and aspartate, are metabolized by neurons in the absence of glucose and contribute to prolong neuronal function and delay ATP depletion during hypoglycaemia. One of the pathways likely implicated in the process is the pyruvate recycling pathway, which allows for the full oxidation of glutamate and glutamine. The operation of this pathway in neurons, particularly after hypoglycaemia, has been re-confirmed recently using metabolic modelling tools (i.e. Metabolic Flux Analysis), which allow for a detailed investigation of cellular metabolism in cultured cells. Overall, the knowledge summarized herein might be used for the development of potential therapies targeting neuronal protection in patients vulnerable to hypoglycaemic episodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alves PM, Nunes R, Zhang C et al (2000) Metabolism of 3-(13)C-malate in primary cultures of mouse astrocytes. Dev Neurosci 22(5–6):456–462

    Article  PubMed  CAS  Google Scholar 

  • Amaral AI, Teixeira AP, Martens S, Bernal V, Sousa MF, Alves PM (2010) Metabolic alterations induced by ischemia in primary cultures of astrocytes: merging 13C NMR spectroscopy and metabolic flux analysis. J Neurochem 113(3):735–748

    Article  PubMed  CAS  Google Scholar 

  • Amaral AI, Teixeira AP, Hakonsen BI, Sonnewald U, Alves PM (2011a) A comprehensive metabolic profile of cultured astrocytes using isotopic transient metabolic flux analysis and C-labeled glucose. Front Neuroenerg 3:5

    Article  CAS  Google Scholar 

  • Amaral AI, Teixeira AP, Sonnewald U, Alves PM (2011b) Estimation of intracellular fluxes in cerebellar neurons after hypoglycemia: importance of the pyruvate recycling pathway and glutamine oxidation. J Neurosci Res 89(5):700–710

    Article  PubMed  CAS  Google Scholar 

  • Arakawa T, Goto T, Okada Y (1991) Effect of ketone body (D-3-hydroxybutyrate) on neural activity and energy metabolism in hippocampal slices of the adult guinea pig. Neurosci Lett 130(1):53–56

    Article  PubMed  CAS  Google Scholar 

  • Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21(10):1133–1145

    Article  PubMed  CAS  Google Scholar 

  • Auer RN (2004) Hypoglycemic brain damage. Metab Brain Dis 19(3–4):169–175

    Article  PubMed  Google Scholar 

  • Auer RN, Olsson Y, Siesjo BK (1984) Hypoglycemic brain injury in the rat. Correlation of density of brain damage with the EEG isoelectric time: a quantitative study. Diabetes 33(11):1090–1098

    Article  PubMed  CAS  Google Scholar 

  • Bak LK, Schousboe A, Sonnewald U, Waagepetersen HS (2006a) Glucose is necessary to maintain neurotransmitter homeostasis during synaptic activity in cultured glutamatergic neurons. J Cereb Blood Flow Metab

  • Bak LK, Schousboe A, Waagepetersen HS (2006b) The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer. J Neurochem 98(3):641–653

    Article  PubMed  CAS  Google Scholar 

  • Bakken IJ, White LR, Aasly J, Unsgard G, Sonnewald U (1997) Lactate formation from [U-13C]aspartate in cultured astrocytes: compartmentation of pyruvate metabolism. Neurosci Lett 237(2–3):117–120

    Article  PubMed  CAS  Google Scholar 

  • Barros LF, Bittner CX, Loaiza A, Porras OH (2007) A quantitative overview of glucose dynamics in the gliovascular unit. Glia 55(12):1222–1237

    Article  PubMed  CAS  Google Scholar 

  • Behar KL, den Hollander JA, Petroff OA, Hetherington HP, Prichard JW, Shulman RG (1985) Effect of hypoglycemic encephalopathy upon amino acids, high-energy phosphates, and pHi in the rat brain in vivo: detection by sequential 1 H and 31P NMR spectroscopy. J Neurochem 44(4):1045–1055

    Article  PubMed  CAS  Google Scholar 

  • Bernal V, Carinhas N, Yokomizo AY, Carrondo MJ, Alves PM (2009) Cell density effect in the baculovirus-insect cells system: a quantitative analysis of energetic metabolism. Biotechnol Bioeng 104(1):162–180

    Article  PubMed  CAS  Google Scholar 

  • Bonarius HPJ, Schmid G, Tramper J (1997) Flux analysis of underdetermined metabolic networks: the quest for the missing constraints. Trends Biotechnol 15(8):308–314

    Article  CAS  Google Scholar 

  • Bonvento G, Herard AS, Voutsinos-Porche B (2005) The astrocyte–neuron lactate shuttle: a debated but still valuable hypothesis for brain imaging. J Cereb Blood Flow Metab 25(10):1394–1399

    Article  PubMed  CAS  Google Scholar 

  • Brooks KJ, Clark JB, Bates TE (1998) 3-Hydroxybutyrate aids the recovery of the energy state from aglycaemic hypoxia of adult but not neonatal rat brain slices. J Neurochem 70(5):1986–1990

    Article  PubMed  CAS  Google Scholar 

  • Brown AM, Ransom BR (2007) Astrocyte glycogen and brain energy metabolism. Glia 55(12):1263–1271

    Article  PubMed  Google Scholar 

  • Brown AM, Wender R, Ransom BR (2001) Metabolic substrates other than glucose support axon function in central white matter. J Neurosci Res 66(5):839–843

    Article  PubMed  CAS  Google Scholar 

  • Brown AM, Baltan Tekkok S, Ransom BR (2004) Energy transfer from astrocytes to axons: the role of CNS glycogen. Neurochem Int 45(4):529–536

    Article  PubMed  CAS  Google Scholar 

  • Butcher SP, Hagberg H, Sandberg M, Hamberger A (1987) Extracellular purine catabolite and amino acid levels in the rat striatum during severe hypoglycemia: Effects of 2-amino-5-phosphonovalerate. Neurochem Int 11(1):95–99

    Article  PubMed  CAS  Google Scholar 

  • Calabresi P, Centonze D, Pisani A, Bernardi G (1997a) Endogenous adenosine mediates the presynaptic inhibition induced by aglycemia at corticostriatal synapses. J Neurosci 17(12):4509–4516

    PubMed  CAS  Google Scholar 

  • Calabresi P, Centonze D, Pisani A, Bernardi G (1997b) A possible mechanism for the aglycemia-induced depression of glutamatergic excitation in the striatum. J Cereb Blood Flow Metab 17(10):1121–1126

    Article  PubMed  CAS  Google Scholar 

  • Canada SE, Weaver SA, Sharpe SN, Pederson BA (2011) Brain glycogen supercompensation in the mouse after recovery from insulin-induced hypoglycemia. J Neurosci Res 89(4):585–591

    Article  PubMed  CAS  Google Scholar 

  • Cataldo A, Broadwell R (1986) Cytochemical identification of cerebral glycogen and glucose-6-phosphatase activity under normal and experimental conditions. I. Neurons and Glia. J Elect Micro Tech 3:413–437

    Article  CAS  Google Scholar 

  • Cerdan S, Kunnecke B, Seelig J (1990) Cerebral metabolism of [1,2-13C2]acetate as detected by in vivo and in vitro 13C NMR. J Biol Chem 265(22):12916–12926

    PubMed  CAS  Google Scholar 

  • Cerdan S, Rodrigues TB, Sierra A et al (2006) The redox switch/redox coupling hypothesis. Neurochem Int 48(6–7):523–530

    Article  PubMed  CAS  Google Scholar 

  • Chapa F, Cruz F, Garcia-Martin ML, Garcia-Espinosa MA, Cerdan S (2000) Metabolism of (1-(13)C) glucose and (2-(13)C, 2-(2)H(3)) acetate in the neuronal and glial compartments of the adult rat brain as detected by [(13)C, (2)H] NMR spectroscopy. Neurochem Int 37(2–3):217–228

    Article  PubMed  CAS  Google Scholar 

  • Choi IY, Lee SP, Kim SG, Gruetter R (2001) In vivo measurements of brain glucose transport using the reversible Michaelis-Menten model and simultaneous measurements of cerebral blood flow changes during hypoglycemia. J Cereb Blood Flow Metab 21(6):653–663

    Article  PubMed  CAS  Google Scholar 

  • Choi IY, Seaquist ER, Gruetter R (2003) Effect of hypoglycemia on brain glycogen metabolism in vivo. J Neurosci Res 72(1):25–32

    Article  PubMed  CAS  Google Scholar 

  • Clarke DD, Sokoloff L (1999) Circulation and Energy Metabolism. in G. J. Siegel, B. W. Agranoff, R. W. Albers, S. K. Fisher and M. D. Uhler (eds) Basic Neurochemistry: Molecular, Cellular and Medical Aspects: Lippincott Williams and Wilkins, 638–669

  • Criego AB, Tkac I, Kumar A, Thomas W, Gruetter R, Seaquist ER (2005) Brain glucose concentrations in patients with type 1 diabetes and hypoglycemia unawareness. J Neurosci Res 79(1–2):42–47

    Article  PubMed  CAS  Google Scholar 

  • Cruz NF, Dienel GA (2002) High glycogen levels in brains of rats with minimal environmental stimuli: implications for metabolic contributions of working astrocytes. J Cereb Blood Flow Metab 22(12):1476–1489

    Article  PubMed  CAS  Google Scholar 

  • Cruz F, Scott SR, Barroso I, Santisteban P, Cerdan S (1998) Ontogeny and cellular localization of the pyruvate recycling system in rat brain. J Neurochem 70(6):2613–2619

    Article  PubMed  CAS  Google Scholar 

  • Cryer PE (2005) Mechanisms of hypoglycemia-associated autonomic failure and its component syndromes in diabetes. Diabetes 54(12):3592–3601

    Article  PubMed  CAS  Google Scholar 

  • De Vivo DC, Trifiletti RR, Jacobson RI, Ronen GM, Behmand RA, Harik SI (1991) Defective glucose transport across the blood–brain barrier as a cause of persistent hypoglycorrhachia, seizures, and developmental delay. N Engl J Med 325(10):703–709

    Article  PubMed  Google Scholar 

  • Dienel GA, Cruz NF (2004) Nutrition during brain activation: does cell-to-cell lactate shuttling contribute significantly to sweet and sour food for thought? Neurochem Int 45(2–3):321–351

    Article  PubMed  CAS  Google Scholar 

  • Dienel GA, Cruz NF (2008) Imaging brain activation: simple pictures of complex biology. Ann N Y Acad Sci 1147:139–170

    Article  PubMed  CAS  Google Scholar 

  • Dienel GA, Ball KK, Cruz NF (2007) A glycogen phosphorylase inhibitor selectively enhances local rates of glucose utilization in brain during sensory stimulation of conscious rats: implications for glycogen turnover. J Neurochem 102(2):466–478

    Article  PubMed  CAS  Google Scholar 

  • Dringen R, Gebhardt R, Hamprecht B (1993) Glycogen in astrocytes: possible function as lactate supply for neighboring cells. Brain Res 623(2):208–214

    Article  PubMed  CAS  Google Scholar 

  • Dringen R, Hoepken HH, Minich T, Ruedig C (2007) Pentose Phospahte Pathway and NADPH Metabolism. in G. Dienel and G. Gibson (eds) Brain Energetics. Integration of Molecular and Cellular Processes: Springer, 41–62

  • Duarte JMN, Lanz B, Gruetter R (2011) Compartmentalized cerebral metabolism of [1,6-13C]glucose determined by in vivo 13C NMR spectroscopy at 14.1 T. Frontiers in Neuroenergetics 3(3)

  • Edmond J, Robbins RA, Bergstrom JD, Cole RA, de Vellis J (1987) Capacity for substrate utilization in oxidative metabolism by neurons, astrocytes, and oligodendrocytes from developing brain in primary culture. J Neurosci Res 18(4):551–561

    Article  PubMed  CAS  Google Scholar 

  • Evans ML, Matyka K, Lomas J et al (1998) Reduced counterregulation during hypoglycemia with raised circulating nonglucose lipid substrates: evidence for regional differences in metabolic capacity in the human brain? J Clin Endocrinol Metab 83(8):2952–2959

    Article  PubMed  CAS  Google Scholar 

  • Fowler JC (1993) Glucose deprivation results in a lactate preventable increase in adenosine and depression of synaptic transmission in rat hippocampal slices. J Neurochem 60(2):572–576

    Article  PubMed  CAS  Google Scholar 

  • Genabai NK, Vavaiya KV, Briski KP (2009) Adaptation of glucokinase gene expression in the rat dorsal vagal complex in a model for recurrent intermediate insulin-induced hypoglycemia: impact of gender. J Mol Neurosci 37(1):80–85

    Article  PubMed  CAS  Google Scholar 

  • Gruetter R (2003) Glycogen: the forgotten cerebral energy store. J Neurosci Res 74(2):179–183

    Article  PubMed  CAS  Google Scholar 

  • Gruetter R, Ugurbil K, Seaquist ER (1998) Steady-state cerebral glucose concentrations and transport in the human brain. J Neurochem 70(1):397–408

    Article  PubMed  CAS  Google Scholar 

  • Gruetter R, Seaquist ER, Ugurbil K (2001) A mathematical model of compartmentalized neurotransmitter metabolism in the human brain. Am J Physiol Endocrinol Metab 281(1):E100–E112

    PubMed  CAS  Google Scholar 

  • Haberg A, Qu H, Bakken IJ et al (1998) In vitro and ex vivo 13C-NMR spectroscopy studies of pyruvate recycling in brain. Dev Neurosci 20(4–5):389–398

    PubMed  CAS  Google Scholar 

  • Haces ML, Hernandez-Fonseca K, Medina-Campos ON, Montiel T, Pedraza-Chaverri J, Massieu L (2008) Antioxidant capacity contributes to protection of ketone bodies against oxidative damage induced during hypoglycemic conditions. Exp Neurol 211(1):85–96

    Article  PubMed  CAS  Google Scholar 

  • Harris RJ, Wieloch T, Symon L, Siesjo BK (1984) Cerebral extracellular calcium activity in severe hypoglycemia: relation to extracellular potassium and energy state. J Cereb Blood Flow Metab 4(2):187–193

    Article  PubMed  CAS  Google Scholar 

  • Hassel B, Sonnewald U (1995) Glial formation of pyruvate and lactate from TCA cycle intermediates: implications for the inactivation of transmitter amino acids? J Neurochem 65(5):2227–2234

    Article  PubMed  CAS  Google Scholar 

  • Haywood SC, Bree AJ, Puente EC, Daphna-Iken D, Fisher SJ (2009) Central but not systemic lipid infusion augments the counterregulatory response to hypoglycemia. Am J Physiol Endocrinol Metab 297(1):E50–E56

    Article  PubMed  CAS  Google Scholar 

  • Henry PG, Lebon V, Vaufrey F, Brouillet E, Hantraye P, Bloch G (2002) Decreased TCA cycle rate in the rat brain after acute 3-NP treatment measured by in vivo 1 H-[13C] NMR spectroscopy. J Neurochem 82(4):857–866

    Article  PubMed  CAS  Google Scholar 

  • Hernandez MJ, Vannucci RC, Salcedo A, Brennan RW (1980) Cerebral blood flow and metabolism during hypoglycemia in newborn dogs. J Neurochem 35(3):622–628

    Article  PubMed  CAS  Google Scholar 

  • Hertz L, Peng L, Dienel GA (2007) Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. J Cereb Blood Flow Metab 27(2):219–249

    Article  PubMed  CAS  Google Scholar 

  • Herzog RI, Chan O, Yu S, Dziura J, McNay EC, Sherwin RS (2008) Effect of acute and recurrent hypoglycemia on changes in brain glycogen concentration. Endocrinology 149(4):1499–1504

    Article  PubMed  CAS  Google Scholar 

  • Ikemoto A, Bole DG, Ueda T (2003) Glycolysis and glutamate accumulation into synaptic vesicles. Role of glyceraldehyde phosphate dehydrogenase and 3-phosphoglycerate kinase. J Biol Chem 278(8):5929–5940

    Article  PubMed  CAS  Google Scholar 

  • Jiang L, Herzog RI, Mason GF (2009) Recurrent antecedent hypoglycemia alters neuronal oxidative metabolism in vivo. Diabetes 58(6):1266–1274

    Article  PubMed  CAS  Google Scholar 

  • Kim YH, Kim EY, Gwag BJ, Sohn S, Koh JY (1999) Zinc-induced cortical neuronal death with features of apoptosis and necrosis: mediation by free radicals. Neuroscience 89(1):175–182

    Article  PubMed  CAS  Google Scholar 

  • Klepper J, Voit T (2002) Facilitated glucose transporter protein type 1 (GLUT1) deficiency syndrome: impaired glucose transport into brain– a review. Eur J Pediatr 161(6):295–304

    Article  PubMed  CAS  Google Scholar 

  • Laffel L (1999) Ketone bodies: a review of physiology, pathophysiology and application of monitoring to diabetes. Diabetes Metab Res Rev 15(6):412–426

    Article  PubMed  CAS  Google Scholar 

  • Lebon V, Petersen KF, Cline GW (2002) Astroglial contribution to brain energy metabolism in humans revealed by 13C nuclear magnetic resonance spectroscopy: elucidation of the dominant pathway for neurotransmitter glutamate repletion and measurement of astrocytic oxidative metabolism. J Neurosci 22(5):1523–1531

    PubMed  CAS  Google Scholar 

  • Lee K, Berthiaume F, Stephanopoulos GN, Yarmush ML (1999) Metabolic flux analysis: a powerful tool for monitoring tissue function. Tissue Eng 5(4):347–368

    Article  PubMed  CAS  Google Scholar 

  • Lewis LD, Ljunggren B, Norberg K, Siesjo BK (1974a) Changes in carbohydrate substrates, amino acids and ammonia in the brain during insulin-induced hypoglycemia. J Neurochem 23(4):659–671

    Article  PubMed  CAS  Google Scholar 

  • Lewis LD, Ljunggren B, Ratcheson RA, Siesjo BK (1974b) Cerebral energy state in insulin-induced hypoglycemia, related to blood glucose and to EEG. J Neurochem 23(4):673–679

    Article  PubMed  CAS  Google Scholar 

  • Magistretti P (2004) Brain Energy Metabolism. in J. Byrne and J. Roberts (eds) From Molecules to Networks. An Introduction to Cellular and Molecular Neuroscience: Elsevier Academic Press, 67–90

  • Magistretti PJ, Pellerin L (1999) Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging. Philos Trans R Soc Lond B Biol Sci 354(1387):1155–1163

    Article  PubMed  CAS  Google Scholar 

  • Mangia S, Simpson IA, Vannucci SJ, Carruthers A (2009) The in vivo neuron-to-astrocyte lactate shuttle in human brain: evidence from modeling of measured lactate levels during visual stimulation. J Neurochem 109(Suppl 1):55–62

    Article  PubMed  CAS  Google Scholar 

  • Mason GF, Rothman DL, Behar KL, Shulman RG (1992) NMR determination of the TCA cycle rate and alpha-ketoglutarate/glutamate exchange rate in rat brain. J Cereb Blood Flow Metab 12(3):434–447

    Article  PubMed  CAS  Google Scholar 

  • Mason GF, Petersen KF, Lebon V, Rothman DL, Shulman GI (2006) Increased brain monocarboxylic acid transport and utilization in type 1 diabetes. Diabetes 55(4):929–934

    Article  PubMed  CAS  Google Scholar 

  • Mason GF, Petersen KF, de Graaf RA, Shulman GI, Rothman DL (2007) Measurements of the anaplerotic rate in the human cerebral cortex using 13C magnetic resonance spectroscopy and [1-13C] and [2-13C] glucose. J Neurochem 100(1):73–86

    Article  PubMed  CAS  Google Scholar 

  • Massieu L, Haces ML, Montiel T, Hernandez-Fonseca K (2003) Acetoacetate protects hippocampal neurons against glutamate-mediated neuronal damage during glycolysis inhibition. Neuroscience 120(2):365–378

    Article  PubMed  CAS  Google Scholar 

  • McCrimmon RJ, Frier BM (1994) Hypoglycaemia, the most feared complication of insulin therapy. Diabete Metab 20(6):503–512

    PubMed  CAS  Google Scholar 

  • McKenna MC (2007) The glutamate-glutamine cycle is not stoichiometric: fates of glutamate in brain. J Neurosci Res 85(15):3347–3358

    Article  PubMed  CAS  Google Scholar 

  • McKenna MC, Stevenson JH, Huang X, Hopkins IB (2000) Differential distribution of the enzymes glutamate dehydrogenase and aspartate aminotransferase in cortical synaptic mitochondria contributes to metabolic compartmentation in cortical synaptic terminals. Neurochem Int 37(2–3):229–241

    Article  PubMed  CAS  Google Scholar 

  • McKenna M, Gruetter R, Sonnewald U, Waagepetersen H, Schousboe A (2006a) Energy Metabolism of the Brain. in N. Bazan (eds) Basic Neurochemistry: Molecular, Cellular and Medical Aspects: Elsevier Academic Press, 531–557

  • McKenna MC, Waagepetersen HS, Schousboe A, Sonnewald U (2006b) Neuronal and astrocytic shuttle mechanisms for cytosolic-mitochondrial transfer of reducing equivalents: current evidence and pharmacological tools. Biochem Pharmacol 71(4):399–407

    Article  PubMed  CAS  Google Scholar 

  • Mejia-Toiber J, Montiel T, Massieu L (2006) D-beta-hydroxybutyrate prevents glutamate-mediated lipoperoxidation and neuronal damage elicited during glycolysis inhibition in vivo. Neurochem Res 31(12):1399–1408

    Article  PubMed  CAS  Google Scholar 

  • Merle M, Martin M, Villegier A, Canioni P (1996) Mathematical modelling of the citric acid cycle for the analysis of glutamine isotopomers from cerebellar astrocytes incubated with [1(−13)C]glucose. Eur J Biochem 239(3):742–751

    Article  PubMed  CAS  Google Scholar 

  • Morgenthaler FD, van Heeswijk RB, Xin L et al (2008) Non-invasive quantification of brain glycogen absolute concentration. J Neurochem 107(5):1414–1423

    Article  PubMed  CAS  Google Scholar 

  • Morris AA (2005) Cerebral ketone body metabolism. J Inherit Metab Dis 28(2):109–121

    Article  PubMed  CAS  Google Scholar 

  • Nehlig A (1997) Cerebral energy metabolism, glucose transport and blood flow: changes with maturation and adaptation to hypoglycaemia. Diabetes Metab 23(1):18–29

    PubMed  CAS  Google Scholar 

  • Nehlig A (2004) Brain uptake and metabolism of ketone bodies in animal models. Prostaglandins Leukot Essent Fat Acids 70(3):265–275

    Article  CAS  Google Scholar 

  • Nehlig A, Pereira de Vasconcelos A (1993) Glucose and ketone body utilization by the brain of neonatal rats. Prog Neurobiol 40(2):163–221

    Article  PubMed  CAS  Google Scholar 

  • Nehlig A, Wittendorp-Rechenmann E, Lam CD (2004) Selective uptake of [14C]2-deoxyglucose by neurons and astrocytes: high-resolution microautoradiographic imaging by cellular 14C-trajectography combined with immunohistochemistry. J Cereb Blood Flow Metab 24(9):1004–1014

    Article  PubMed  CAS  Google Scholar 

  • Nielsen J (1998) Metabolic engineering: techniques for analysis of targets for genetic manipulations. Biotechnol Bioeng 58(2–3):125–132

    Article  PubMed  CAS  Google Scholar 

  • Niklas J, Schneider K, Heinzle E (2010) Metabolic flux analysis in eukaryotes. Curr Opin Biotechnol 21(1):63–69

    Article  PubMed  CAS  Google Scholar 

  • Noh KM, Koh JY (2000) Induction and activation by zinc of NADPH oxidase in cultured cortical neurons and astrocytes. J Neurosci 20(23):RC111

    PubMed  CAS  Google Scholar 

  • Norberg K, Siesio BK (1976) Oxidative metabolism of the cerebral cortex of the rat in severe insulin-induced hypoglycaemia. J Neurochem 26(2):345–352

    Article  PubMed  CAS  Google Scholar 

  • Okada Y, Lipton P (2007) Glucose, Oxidative Energy Metabolism, and Neural Function in Brain Slices—Glycolysis Plays a Key Role in Neural Activity. In G. Dienel and G. Gibson (eds) Brain Energetics. Integration of Molecular and Cellular Processes: Springer, 17–39

  • Olstad E, Olsen GM, Qu H, Sonnewald U (2007) Pyruvate recycling in cultured neurons from cerebellum. J Neurosci Res 85(15):3318–3325

    Article  PubMed  CAS  Google Scholar 

  • Oz G, Henry PG, Seaquist ER, Gruetter R (2003) Direct, noninvasive measurement of brain glycogen metabolism in humans. Neurochem Int 43(4–5):323–329

    Article  PubMed  CAS  Google Scholar 

  • Oz G, Seaquist ER, Kumar A et al (2007) Human brain glycogen content and metabolism: implications on its role in brain energy metabolism. Am J Physiol Endocrinol Metab 292(3):E946–E951

    Article  PubMed  CAS  Google Scholar 

  • Oz G, Kumar A, Rao JP (2009) Human brain glycogen metabolism during and after hypoglycemia. Diabetes 58(9):1978–1985

    Article  PubMed  CAS  Google Scholar 

  • Oz G, Tesfaye N, Kumar A, Deelchand DK, Eberly LE, Seaquist ER (2012) Brain glycogen content and metabolism in subjects with type 1 diabetes and hypoglycemia unawareness. J Cereb Blood Flow Metab 32(2):256–263

    Article  PubMed  CAS  Google Scholar 

  • Page KA, Williamson A, Yu N et al (2009) Medium-chain fatty acids improve cognitive function in intensively treated type 1 diabetic patients and support in vitro synaptic transmission during acute hypoglycemia. Diabetes 58(5):1237–1244

    Article  PubMed  CAS  Google Scholar 

  • Pan JW, de Graaf RA, Petersen KF, Shulman GI, Hetherington HP, Rothman DL (2002) [2,4-13 C2]-beta-Hydroxybutyrate metabolism in human brain. J Cereb Blood Flow Metab 22(7):890–898

    Article  PubMed  CAS  Google Scholar 

  • Pellerin L (2010) Food for thought: the importance of glucose and other energy substrates for sustaining brain function under varying levels of activity. Diabetes Metab 36(Suppl 3):S59–S63

    Article  PubMed  CAS  Google Scholar 

  • Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci U S A 91(22):10625–10629

    Article  PubMed  CAS  Google Scholar 

  • Pellerin L, Pellegri G, Bittar PG (1998) Evidence supporting the existence of an activity-dependent astrocyte-neuron lactate shuttle. Dev Neurosci 20(4–5):291–299

    Article  PubMed  CAS  Google Scholar 

  • Pellerin L, Bouzier-Sore AK, Aubert A et al (2007) Activity-dependent regulation of energy metabolism by astrocytes: an update. Glia 55(12):1251–1262

    Article  PubMed  Google Scholar 

  • Quek LE, Dietmair S, Kromer JO, Nielsen LK (2010) Metabolic flux analysis in mammalian cell culture. Metab Eng 12(2):161–171

    Article  PubMed  CAS  Google Scholar 

  • Rafiki A, Boulland JL, Halestrap AP, Ottersen OP, Bergersen L (2003) Highly differential expression of the monocarboxylate transporters MCT2 and MCT4 in the developing rat brain. Neuroscience 122(3):677–688

    Article  PubMed  CAS  Google Scholar 

  • Raichle ME, Mintun MA (2006) Brain work and brain imaging. Annu Rev Neurosci 29:449–476

    Article  PubMed  CAS  Google Scholar 

  • Rao R, Ennis K, Long JD, Ugurbil K, Gruetter R, Tkac I (2010) Neurochemical changes in the developing rat hippocampus during prolonged hypoglycemia. J Neurochem 114(3):728–738

    Article  PubMed  CAS  Google Scholar 

  • Roberts EJ (2007) The support of energy metabolism in the central nervous system with substrates other than glucose. In G. Dienel and G. Gibson (eds) Brain energetics. Integration of molecular and cellular processes. Springer, Heidelberg, pp 197–238

  • Sensi SL, Yin HZ, Carriedo SG, Rao SS, Weiss JH (1999) Preferential Zn2+ influx through Ca2+ − permeable AMPA/kainate channels triggers prolonged mitochondrial superoxide production. Proc Natl Acad Sci U S A 96(5):2414–2419

    Article  PubMed  CAS  Google Scholar 

  • Shen J, Rothman DL, Behar KL, Xu S (2009) Determination of the glutamate-glutamine cycling flux using two-compartment dynamic metabolic modeling is sensitive to astroglial dilution. J Cereb Blood Flow Metab 29(1):108–118

    Article  PubMed  CAS  Google Scholar 

  • Shetty PK, Sadgrove MP, Galeffi F, Turner DA (2012) Pyruvate incubation enhances glycogen stores and sustains neuronal function during subsequent glucose deprivation. Neurobiol Dis 45(1):177–187

    Article  PubMed  CAS  Google Scholar 

  • Sibson NR, Mason GF, Shen J et al (2001) In vivo (13)C NMR measurement of neurotransmitter glutamate cycling, anaplerosis and TCA cycle flux in rat brain during. J Neurochem 76(4):975–989

    Article  PubMed  CAS  Google Scholar 

  • Simpson IA, Carruthers A, Vannucci SJ (2007) Supply and demand in cerebral energy metabolism: the role of nutrient transporters. J Cereb Blood Flow Metab 27(11):1766–1791

    Article  PubMed  CAS  Google Scholar 

  • Sonnewald U, Westergaard N, Jones P, Taylor A, Bachelard HS, Schousboe A (1996) Metabolism of [U-13C5] glutamine in cultured astrocytes studied by NMR spectroscopy: first evidence of astrocytic pyruvate recycling. J Neurochem 67(6):2566–2572

    Article  PubMed  CAS  Google Scholar 

  • Suh SW, Aoyama K, Chen Y et al (2003) Hypoglycemic neuronal death and cognitive impairment are prevented by poly(ADP-ribose) polymerase inhibitors administered after hypoglycemia. J Neurosci 23(33):10681–10690

    PubMed  CAS  Google Scholar 

  • Suh SW, Garnier P, Aoyama K, Chen Y, Swanson RA (2004) Zinc release contributes to hypoglycemia-induced neuronal death. Neurobiol Dis 16(3):538–545

    Article  PubMed  CAS  Google Scholar 

  • Suh SW, Aoyama K, Matsumori Y, Liu J, Swanson RA (2005) Pyruvate administered after severe hypoglycemia reduces neuronal death and cognitive impairment. Diabetes 54(5):1452–1458

    Article  PubMed  CAS  Google Scholar 

  • Suh SW, Bergher JP, Anderson CM, Treadway JL, Fosgerau K, Swanson RA (2007a) Astrocyte glycogen sustains neuronal activity during hypoglycemia:studies with the glycogen phosphorylase inhibitor CP-316,819. J Pharmacol Exp Ther

  • Suh SW, Hamby AM, Swanson RA (2007b) Hypoglycemia, brain energetics, and hypoglycemic neuronal death. Glia 55(12):1280–1286

    Article  PubMed  Google Scholar 

  • Sutherland GR, Tyson RL, Auer RN (2008) Truncation of the krebs cycle during hypoglycemic coma. Med Chem 4(4):379–385

    Article  PubMed  CAS  Google Scholar 

  • Suzuki A, Stern Sarah A, Bozdagi O et al (2011) Astrocyte-neuron lactate transport is required for long-term memory formation. Cell 144(5):810–823

    Article  PubMed  CAS  Google Scholar 

  • Teixeira AP, Santos SS, Carinhas N, Oliveira R, Alves PM (2008) Combining metabolic flux analysis tools and 13C NMR to estimate intracellular fluxes of cultured astrocytes. Neurochem Int 52(3):478–486

    Article  PubMed  CAS  Google Scholar 

  • Tekkok SB, Brown AM, Westenbroek R, Pellerin L, Ransom BR (2005) Transfer of glycogen-derived lactate from astrocytes to axons via specific monocarboxylate transporters supports mouse optic nerve activity. J Neurosci Res 81(5):644–652

    Article  PubMed  CAS  Google Scholar 

  • Vallino JJ, Stephanopoulos G (1993) Metabolic flux distributions in Corynebacterium glutamicum during growth and lysine overproduction. Biotechnol Bioeng 41(6):633–646

    Article  PubMed  CAS  Google Scholar 

  • Vannucci SJ, Simpson IA (2003) Developmental switch in brain nutrient transporter expression in the rat. Am J Physiol Endocrinol Metab 285(5):E1127–E1134

    PubMed  CAS  Google Scholar 

  • Varma A, Palsson BO (1994) Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl Environ Microbiol 60(10):3724–3731

    PubMed  CAS  Google Scholar 

  • Vavaiya KV, Briski KP (2008a) Effects of caudal fourth ventricular lactate infusion on hypoglycemia-associated MCT2, GLUT3, GLUT4, GCK, and sulfonylurea receptor-1 gene expression in the ovariectomized female rat LHA and VMH: impact of estradiol. J Mol Neurosci 34(2):121–129

    Article  PubMed  CAS  Google Scholar 

  • Vavaiya KV, Briski KP (2008b) Effects of caudal hindbrain lactate infusion on insulin-induced hypoglycemia and neuronal substrate transporter glucokinase and sulfonylurea receptor-1 gene expression in the ovariectomized female rat dorsal vagal complex: Impact of estradiol. J Neurosci Res 86(3):694–701

    Article  PubMed  CAS  Google Scholar 

  • Vavaiya KV, Paranjape SA, Patil GD, Briski KP (2006) Vagal complex monocarboxylate transporter-2 expression during hypoglycemia. Neuroreport 17(10):1023–1026

    Article  PubMed  CAS  Google Scholar 

  • Waagepetersen HS, Qu H, Hertz L, Sonnewald U, Schousboe A (2002) Demonstration of pyruvate recycling in primary cultures of neocortical astrocytes but not in neurons. Neurochem Res 27(11):1431–1437

    Article  PubMed  CAS  Google Scholar 

  • Wada H, Okada Y, Nabetani M, Nakamura H (1997) The effects of lactate and beta-hydroxybutyrate on the energy metabolism and neural activity of hippocampal slices from adult and immature rat. Brain Res Dev Brain Res 101(1–2):1–7

    Article  PubMed  CAS  Google Scholar 

  • Warren RE, Frier BM (2005) Hypoglycaemia and cognitive function. Diabetes Obes Metab 7(5):493–503

    Article  PubMed  Google Scholar 

  • Wender R, Brown AM, Fern R, Swanson RA, Farrell K, Ransom BR (2000) Astrocytic glycogen influences axon function and survival during glucose deprivation in central white matter. J Neurosci 20(18):6804–6810

    PubMed  CAS  Google Scholar 

  • Wiechert W (2001) 13C metabolic flux analysis. Metab Eng 3(3):195–206

    Article  PubMed  CAS  Google Scholar 

  • Wieloch T (1985) Hypoglycemia-induced neuronal damage prevented by an N-methyl-D-aspartate antagonist. Science 230(4726):681–683

    Article  PubMed  CAS  Google Scholar 

  • Wieloch T, Harris RJ, Symon L, Siesjo BK (1984) Influence of severe hypoglycemia on brain extracellular calcium and potassium activities, energy, and phospholipid metabolism. J Neurochem 43(1):160–168

    Article  PubMed  CAS  Google Scholar 

  • Williams LR, Leggett RW (1989) Reference values for resting blood flow to organs of man. Clin Phys Physiol Meas 10(3):187–217

    Article  PubMed  CAS  Google Scholar 

  • Yamada KA, Rensing N, Thio LL (2005) Ketogenic diet reduces hypoglycemia-induced neuronal death in young rats. Neurosci Lett 385(3):210–214

    Article  PubMed  CAS  Google Scholar 

  • Yamane K, Yokono K, Okada Y (2000) Anaerobic glycolysis is crucial for the maintenance of neural activity in guinea pig hippocampal slices. J Neurosci Methods 103(2):163–171

    Article  PubMed  CAS  Google Scholar 

  • Zhou D, Qian J, Chang H, Xi B, Sun RP (2012) Pyruvate administered to newborn rats with insulin-induced hypoglycemic brain injury reduces neuronal death and cognitive impairment. Eur J Pediatr 171(1):103–109

    Article  PubMed  CAS  Google Scholar 

  • Zhu PJ, Krnjevic K (1993) Adenosine release is a major cause of failure of synaptic transmission during hypoglycaemia in rat hippocampal slices. Neurosci Lett 155(2):128–131

    Article  PubMed  CAS  Google Scholar 

  • Zielke HR, Zielke CL, Baab PJ (2009) Direct measurement of oxidative metabolism in the living brain by microdialysis: a review. J Neurochem 109(Suppl 1):24–29

    Article  PubMed  CAS  Google Scholar 

  • Zwingmann C, Leibfritz D (2007) Glial-Neuronal shuttle systems. In G. Dienel and G. Gibson (eds) Brain energetics. Integration of molecular and cellular processes. Springer, Heidelberg, pp 197–238

Download references

Acknowledgments

Dr. Ana P. Teixeira, Dr. Paula M. Alves (IBET, Portugal) and Prof. Ursula Sonnewald (NTNU, Norway) are gratefully acknowledged for fruitful discussions and all the support and scientific contribution to the MFA studies. Prof Ursula Sonnewald is further acknowledged for the critical reading of the manuscript.

Details of funding

Part of the experimental work described in this review was supported by the Fundação para a Ciência e Tecnologia (FCT), Portugal (project ref. PTDC/BIO/69407/2006 and PhD fellowship SFRH/BD/29666/2006 to A. Amaral), and the Norwegian Research Council.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana I. Amaral.

Additional information

Communicated by: Francois Feillet

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amaral, A.I. Effects of hypoglycaemia on neuronal metabolism in the adult brain: role of alternative substrates to glucose. J Inherit Metab Dis 36, 621–634 (2013). https://doi.org/10.1007/s10545-012-9553-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-012-9553-3

Keywords

Navigation