Skip to main content

Advertisement

Log in

d-β-Hydroxybutyrate Prevents Glutamate-Mediated Lipoperoxidation and Neuronal Damage Elicited during Glycolysis Inhibition In Vivo

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Excitotoxic neuronal death mediated by over-activation of glutamate receptors has been implicated in ischemia, hypoglycemia and some neurodegenerative diseases. It involves oxidative stress and is highly facilitated during impairment of energy metabolism. We have shown previously that in vivo systemic glycolysis inhibition with iodoacetate (IOA), exacerbates glutamate excitotoxicity. We have now investigated whether this effect involves oxidative damage to membrane lipids, as evaluated by the presence of thiobarbituric acid-reactive substances. We have also tested whether the ketone body, d-β-hydroxybutyrate (d-BHB), prevents lipoperoxidation and tissue damage. Results show that glutamate intrastriatal injection in control rats transiently enhances lipoperoxidation, while in IOA-treated animals increased lipoperoxidation is sustained. Treatment with d-BHB significantly reduces striatal lesions and lipoperoxidation. Vitamin E also reduced neuronal damage and lipoperoxidation. Results suggest that glycolysis impairment favors a pro-oxidant condition and situates oxidative damage as an important mediator of in vivo induced excitotoxicity. Results provide evidence for the neuroprotective effect of d-BHB against glutamate toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Olney JW (1971) Glutamate-induced neuronal necrosis in the infant mouse hypothalamus. An electron microscopic study. J Neuropathol Exp Neurol 30:75–90

    CAS  Google Scholar 

  2. Choi D (1992) Excitotoxic cell death. J Neurobiol 23:1261–1276

    Article  PubMed  CAS  Google Scholar 

  3. Benveniste H, Drejer J, Schousboe A et al (1984) Elevation of extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem 43:1368–1374

    Article  Google Scholar 

  4. Sandberg M, Butcher S, Hagberg H (1986) Extracellular overflow of neuroactive amino acids during severe insulin-induced hypoglycemia: in vivo dialysis of the rat hippocampus. J Neurochem 47:178–184

    Article  PubMed  CAS  Google Scholar 

  5. Dawson L, Djali S, Gonzales C et al (2000) Characterization of transient focal ischemia-induced increases in extracellular glutamate and aspartate in spontaneously hypertensive rats. Brain Res Bull 53:767–776

    Google Scholar 

  6. Phillis J, Ren J, O’Regan M (2000) Transporter reversal as a mechanism of glutamate release from the ischemic rat cerebral cortex: studies with dl-threo-beta-benzyloxyaspartate. Brain Res 880:105–112

    Article  Google Scholar 

  7. Seki Y, Feustel PJ, Keller RW Jr et al (1999) Inhibition of ischemia-induced glutamate release in rat striatum by dihydrokinate and an anion channel blocker. Stroke 30:433–440

    PubMed  CAS  Google Scholar 

  8. Choi D (1988) Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. Trends Neurosci 11:464–469

    Article  Google Scholar 

  9. Lafon-Cazal M, Pietri S, Culcasi M et al (1993) NMDA-dependent superoxide production and neurotoxicity. Nature 364:535–537

    Article  PubMed  CAS  Google Scholar 

  10. Bondy SC, Lee DK (1993) Oxidative stress induced by glutamate receptor agonists. Brain Res 610:229–233

    Article  PubMed  CAS  Google Scholar 

  11. Almeida A, Bolaños JP (2001) A transient inhibition of mitochondrial ATP synthesis by nitric oxide synthase activation triggered apoptosis in primary cortical neurons. J Neurochem 77:676–690

    Article  PubMed  CAS  Google Scholar 

  12. Atlante A, Calissano P, Bobba A et al (2001) Glutamate neurotoxicity, oxidative stress and mitochondria. FEBS Lett 497:1–5

    Article  PubMed  CAS  Google Scholar 

  13. Zeevalk GD, Nicklas WJ (1991) Mechanism underlying initiation of excitotoxicity associated with metabolic inhibition. J Pharmacol Exp Ther 257:870–878

    PubMed  CAS  Google Scholar 

  14. Greene JC, Greenamyre JT (1996) Bioenergetics and glutamate excitotoxicity. Prog Neurobiol 48:613–634

    Article  PubMed  CAS  Google Scholar 

  15. Sánchez-Carbente M, Massieu L (1999) Transient inhibition of glutamate uptake in vivo induces neurodegeneration when energy metabolism is impaired. J Neurochem 72:129–138

    Article  PubMed  Google Scholar 

  16. Massieu L, Gómez-Román N, Montiel T (2000) In vivo potentiation of glutamate-mediated neuronal damage after chronic administration of the glycolysis inhibitor iodoacetate. Exp Neurol 165:257–267

    Article  PubMed  CAS  Google Scholar 

  17. Novelli A, Reilly JA, Lysko PG et al (1988) Glutamate becomes neurotoxic via N-methyl-d-aspartate receptor when intracellular energy levels are reduced. Brain Res 451:205–212

    Article  PubMed  CAS  Google Scholar 

  18. Henneberry RC (1989) The role of neuronal energy in the neurotoxicity of excitatory amino acids. Neurobiol Aging 10:611–613

    Article  PubMed  CAS  Google Scholar 

  19. García O, Massieu L (2001) Strategies for neuroprotection against l-trans-2,4-pyrrolidine dicarboxylate-induced neuronal damage during energy impairment in vitro. J Neurosci Res 64:418–428

    Article  PubMed  Google Scholar 

  20. Massieu L, Haces M, Montiel T, Hernández-Fonseca K (2003) Acetoacetate protects hippocampal neurons against glutamate-mediated neuronal damage during glycolysis inhibition. Neuroscience 120:365–378

    Article  PubMed  CAS  Google Scholar 

  21. Owen OE, Morgan AP, Kemp HG et al (1967) Brain metabolism during fasting. J Clin Invest 46:1589–1595

    PubMed  CAS  Google Scholar 

  22. Sokoloff L (1973) Metabolism of ketone bodies by the brain. Annu Rev Med 24:271–280

    Article  PubMed  CAS  Google Scholar 

  23. Gjedde A, Crone CH (1975) Induction processes in blood–brain transfer of ketone bodies during starvation. Am J Physiol 229:1165–1169

    PubMed  CAS  Google Scholar 

  24. Guzmán M, Blázquez C (2001) Is there an astrocyte-neuron ketone body shuttle. Trends Endocrinol Metab 12:169–173

    Article  PubMed  Google Scholar 

  25. Pollay M, Stevens A (1980) Starvation-induced changes in transport of ketone bodies across the blood–brain barrier. J Neurosci Res 5:163–172

    Article  PubMed  CAS  Google Scholar 

  26. Kirsch JR, D’Alecy LG (1984) Hypoxia induced preferential ketone utilization by rat brain slices. Stroke 15:319–323

    PubMed  CAS  Google Scholar 

  27. Hawkins RA, Mans AM, Davis DW (1986) Regional ketone body utilization by rat brain in starvation and diabetes. Am J Physiol 250:E169–E178

    PubMed  CAS  Google Scholar 

  28. Nehlig A (1996) Respective roles of glucose and ketone bodies as substrates for cerebral energy metabolism in the suckling rat. Dev Neurosci 18:426–433

    PubMed  CAS  Google Scholar 

  29. Hori A, Tandon O, Holmes GL et al (1997) Ketogenic diet: effects on expression of kindled seizures and behavior in adult rats. Epilepsia 38:750–758

    Article  PubMed  CAS  Google Scholar 

  30. Bough KJ, Yao SG, Eagles DA (2000) Higher ketogenic diet ratios confer protection from seizures without neurotoxicity. Epilepsy Res 38:15–25

    Article  PubMed  CAS  Google Scholar 

  31. Yudkoff M, Daikhin Y, Nissim I et al (2001) Ketogenic diet, amino acid metabolism, and seizure control. J Neurosci Res 66:931–940

    Article  PubMed  CAS  Google Scholar 

  32. Freeman JM, Vining EPG, Pillas DJ et al (1998) The efficacy of the ketogenic diet—1998. A prospective evaluation of intervention in 150 children. Pediatrics 102:1358–1363

    Article  PubMed  CAS  Google Scholar 

  33. Izumi Y, Ishii K, Katsuki H et al (1998) Beta-hydroxybutyrate fuels synaptic function during development. Histological and physiological evidence in rat hippocampal slices. J Clin Invest 101:1121–1132

    PubMed  CAS  Google Scholar 

  34. Masuda R, Monahan J, Kashiwaya Y (2005) d-beta-Hydroxybutyrate is neuroprotective against hypoxia in serum-free hippocampal primary cultures. J Neurosci Res 80:501–509

    Article  PubMed  CAS  Google Scholar 

  35. Noh HS, Hah Y-S, Nilufar R et al (2006) Acetoacetate protects neuronal cells from oxidative glutamate toxicity. J Neurosci Res 83:702–709

    Article  PubMed  CAS  Google Scholar 

  36. Suzuki M, Suzuki M, Sato K et al (2001) Effect of β-hydroxybutyrate, a cerebral function improving agent, on cerebral hypoxia, anoxia and ischemia in mice and rats. Jpn J Pharmacol 87:143–150

    Article  PubMed  CAS  Google Scholar 

  37. Suzuki M, Suzuki M, Kitamura Y et al (2002) β-Hydroxybutyrate, a cerebral function improving agent, protects rat brain against ischemic damage caused by permanent and transient focal cerebral ischemia. Jpn J Pharmacol 89:36–43

    Article  PubMed  CAS  Google Scholar 

  38. Tieu K, Perier C, Caspersen C et al (2003) d-β-Hydroxybutyrate rescues mitochondrial respiration and mitigates features of Parkinson disease. J Clin Invest 112:892–901

    Article  PubMed  CAS  Google Scholar 

  39. Montiel T, Quiroz-Baez R, Massieu L et al (2006) Role of oxidative stress on β-amyloid neurotoxicity elicited during impairment of energy metabolism in the hippocampus. Protection by antioxidants. Exp Neurol 200:496–508

    Article  PubMed  CAS  Google Scholar 

  40. Matthews RT, Ferrante RJ, Jenkins BG et al (1997) Iodoacetate produces striatal excitotoxic lesions. J Neurochem 69:285–289

    Article  PubMed  CAS  Google Scholar 

  41. Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Academic Press, Sidney

    Google Scholar 

  42. Ikemoto A, Bole DG, Ueda T (2003) Glycolysis and glutamate accumulation into synaptic vesicles. Role of glyceraldehyde phosphate dehydrogenase and 3-phosphoglycerate kinase. J Biol Chem 278:5929–5940

    Article  PubMed  CAS  Google Scholar 

  43. Delaney SM, Geiger JD (1996) Brain regional levels of adenosine and adenosine nucleotides in rats killed by high-energy focused microwave irradiation. J Neurosci Methods 64:151–156

    Article  PubMed  CAS  Google Scholar 

  44. Matthews RT, Yang L, Jenkins BG et al (1998) Neuroprotective effect of creatine and cyclocreatine in animal models of Huntington’s disease. J Neurosci 18:156–163

    PubMed  CAS  Google Scholar 

  45. Gluck M, Jayatilleke E, Shaw S et al (2000) CNS oxidative stress associated with the kainic acid rodent model of experimental epilepsy. Epilepsy Res 39:63–71

    Article  PubMed  CAS  Google Scholar 

  46. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  47. Arias C, Montiel T, Quiroz-Baez R, Massieu L (2002) β-Amyloid neurotoxicity is exacerbated during glycolysis inhibition and mitochondrial impairment in the rat hippocampus in vivo and in isolated nerve terminals: implications for Alzheimer’s disease. Exp Neurol 176:163–174

    Article  PubMed  CAS  Google Scholar 

  48. Coyle JT, Puttfarcken P (1993) Oxidative stress, glutamate and neurodegenerative disorders. Science 262:689–695

    Article  PubMed  CAS  Google Scholar 

  49. Hammer B, Parker WD, Bennet JP (1993) NMDA receptors increase OH radicals in vivo by using nitric oxide synthase and protein kinase C. Neuroreport 5:72–74

    Article  PubMed  CAS  Google Scholar 

  50. Phillis JW, Clough-Helfman C (1990) Protection from cerebral ischemic injury in gerbils with the spin trap agent N-tert-butyl-alpha-phenylnitrone (PBN). Neurosci Lett 116:315–319

    Article  PubMed  CAS  Google Scholar 

  51. Schulz JB, Henshaw DR, Siwek D et al (1995) Involvement of free radicals in excitotoxicity in vivo. J Neurochem 64:2239–2247

    Article  PubMed  CAS  Google Scholar 

  52. Dykens JA, Stern A, Trenkner E (1987) Mechanism of kainate toxicity to cerebellar neurons in vitro is analogous to reperfusion tissue injury. J Neurochem 49:1222–1228

    Article  PubMed  CAS  Google Scholar 

  53. Dawson VL, Dawson TM, London ED et al (1991) Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc Natl Acad Sci USA 88:6368–6371

    Article  PubMed  CAS  Google Scholar 

  54. Bolaños JP, Almeida A (1999) Roles of nitric oxide in brain hypoxia–ischemia. Biochem Biophys Acta 1411:415–436

    Article  PubMed  Google Scholar 

  55. Uto A, Dux E, Kusumoto M et al (1995) Delayed neuronal death after brief histotoxic hypoxia in vitro. J Neurochem 64:2185–2191

    Article  PubMed  CAS  Google Scholar 

  56. Rego AC, Santos MS, Oliveira CR (1999) Influence of the antioxidants vitamin E and idebenone on retinal cell injury mediated by chemical ischemia, hypoglycemia, or oxidative stress. Free Radic Biol Med 26:1405–1417

    Article  PubMed  CAS  Google Scholar 

  57. Malcolm CS, Benwell KR, Lamb H et al (2000) Characterization of iodoacetate-mediated neurotoxicity in vitro using primary cultures of rat cerebellar granule cells. Free Radic Biol Med 28:102–107

    Article  PubMed  CAS  Google Scholar 

  58. Kahlert S, Reiser G (2000) Requirement of glycolytic and mitochondrial energy supply for loading of Ca2+ stores and InsP3-mediated Ca2+ signaling in rat hippocampus astrocytes. J Neurosci Res 61:409–420

    Article  PubMed  CAS  Google Scholar 

  59. Hernández-Fonseca K, Massieu L (2005) Disruption of endoplasmic reticulum calcium stores is involved in neuronal death induced by glycolysis inhibition in cultured hippocampal neurons. J Neurosci Res 82:196–205

    Article  PubMed  CAS  Google Scholar 

  60. Ankarcrona M, Dypbukt JM, Bonfoco E et al (1995) Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron 15:961–973

    Article  PubMed  CAS  Google Scholar 

  61. Rego AC, Areias FM, Santos MS, Oliveira CR (1999) Distinct glycolysis inhibitors determine retinal cell sensitivity to glutamate-mediated injury. Neurochem Res 24:351–358

    Article  PubMed  CAS  Google Scholar 

  62. Kashiwaya Y, Takeshima T, Mori N et al (2000) d-β-Hydroxybutyrate protects neurons in models of Alzheimer’s and Parkinson’s disease. Proc Natl Acad Sci USA 97:5440–5444

    Article  PubMed  CAS  Google Scholar 

  63. Wada H, Okada Y, Nabetani M et al (1997) The effects of lactate and β-hydroxybutyrate on the energy metabolism and neural activity of hippocampal slices from adult and immature rat. Brain Res Dev Brain Res 101:1–7

    Article  PubMed  CAS  Google Scholar 

  64. Marie C, Bralet AM, Gueldry S et al (1990) Fasting prior to transient cerebral ischemia reduces delayed neuronal necrosis. Metab Brain Dis 5:65–75

    Article  PubMed  CAS  Google Scholar 

  65. Noh HS, Kim YS, Lee HP et al (2003) The protective effect of a ketogenic diet on kainic acid-induced hippocampal cell death in the male ICR mice. Epilepsy Res 53:119–128

    Article  PubMed  CAS  Google Scholar 

  66. Miyamoto M, Murphy T, Schnaar RL et al (1989) Antioxidants protect against glutamate-induced cytotoxicity in a neuronal cell line. J Pharmacol Exp Ther 250:1132–1140

    PubMed  CAS  Google Scholar 

  67. Himi I, Ikeda M, Yasuhara T et al (2003) Role of neuronal glutamate transporter in the cysteine uptake and intracellular glutathione levels in cultured neurons. J Neural Transm 110:1337–1348

    Article  PubMed  CAS  Google Scholar 

  68. Ziegler DR, Ribeiro LC, Hagenn M et al (2003) Ketogenic diet increases glutathione peroxidase activity in rat hippocampus. Neurochem Res 28:1793–1797

    Article  PubMed  CAS  Google Scholar 

  69. Veech RL, Chance B, Kashiwaya Y (2001) Ketones bodies, potential therapeutic uses. IUBMB Life 51:241–247

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by 40306-M CONACYT and IN222503 PAPIIT UNAM grants to LM and CONACYT and DGEP-UNAM fellowships to JM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lourdes Massieu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mejía-Toiber, J., Montiel, T. & Massieu, L. d-β-Hydroxybutyrate Prevents Glutamate-Mediated Lipoperoxidation and Neuronal Damage Elicited during Glycolysis Inhibition In Vivo. Neurochem Res 31, 1399–1408 (2006). https://doi.org/10.1007/s11064-006-9189-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-006-9189-5

Keywords

Navigation