Skip to main content
Log in

Creatine metabolism in urea cycle defects

  • SSIEM Symposium 2011
  • Published:
Journal of Inherited Metabolic Disease

Abstract

Creatine (Cr) and phosphocreatine play an essential role in energy storage and transmission. Maintenance of creatine pool is provided by the diet and by de novo synthesis, which utilizes arginine, glycine and s-adenosylmethionine as substrates. Three primary Cr deficiencies exists: arginine:glycine amidinotransferase deficiency, guanidinoacetate methyltransferase deficiency and the defect of Cr transporter SLC6A8. Secondary Cr deficiency is characteristic of ornithine-aminotransferase deficiency, whereas non-uniform Cr abnormalities have anecdotally been reported in patients with urea cycle defects (UCDs), a disease category related to arginine metabolism in which Cr must be acquired by de novo synthesis because of low dietary intake. To evaluate the relationships between ureagenesis and Cr synthesis, we systematically measured plasma Cr in a large series of UCD patients (i.e., OTC, ASS, ASL deficiencies, HHH syndrome and lysinuric protein intolerance). Plasma Cr concentrations in UCDs followed two different trends: patients with OTC and ASS deficiencies and HHH syndrome presented a significant Cr decrease, whereas in ASL deficiency and lysinuric protein intolerance Cr levels were significantly increased (23.5 vs. 82.6 μmol/L; p < 0.0001). This trend distribution appears to be regulated upon cellular arginine availability, highlighting its crucial role for both ureagenesis and Cr synthesis. Although decreased Cr contributes to the neurological symptoms in primary Cr deficiencies, still remains to be explored if an altered Cr metabolism may participate to CNS dysfunction also in patients with UCDs. Since arginine in most UCDs becomes a semi-essential aminoacid, measuring plasma Cr concentrations might be of help to optimize the dose of arginine substitution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arias A, Garcia-Villoria J, Ribes A (2004) Guanidinoacetate and creatine/creatinine levels in controls and patients with urea cycle defects. Mol Genet Metab 82:220–223

    Article  PubMed  CAS  Google Scholar 

  • Barilli A, Rotoli BM, Visigalli R, Bussolati O, Gazzola GC, Gatti R, Dionisi-Vici C, Martinelli D, Goffredo BM, Font-Llitjós M, Mariani F, Luisetti M, Dall’asta V (2012) Impaired phagocytosis in macrophages from patients affected by lysinuric protein intolerance. Mol Genet Metab 105(4):585-9

    Google Scholar 

  • Béard E, Braissant O (2010) Synthesis and transport of creatine in the CNS: importance for cerebral functions. J Neurochem 115:297–313

    Article  PubMed  Google Scholar 

  • Boenzi S, Rizzo C, Di Ciommo VM, Martinelli D, Goffredo BM, la Marca G, Dionisi-Vici C (2011) Simultaneous determination of creatine and guanidinoacetate in plasma by liquid chromatography-tandem mass spectrometry (LC-MS/MS). J Pharm Biomed Anal 56:792–798

    Article  PubMed  CAS  Google Scholar 

  • Braissant O, Henry H, Villard AM, Zurich MG, Loup M, Eilers B, Parlascino G, Matter E, Boulat O, Honegger P, Bachmann C (2002) Ammonium-induced impairment of axonal growth is prevented through glial creatine. J Neurosci 22:9810–9820

    PubMed  CAS  Google Scholar 

  • Braissant O, Cagnon L, Monnet-Tschudi F, Speer O, Wallimann T, Honegger P, Henry H (2008) Ammonium alters creatine transport and synthesis in a 3D culture of developing brain cells, resulting in secondary cerebral creatine deficiency. Eur J Neurosci 27:1673–1685

    Article  PubMed  Google Scholar 

  • Braissant O, Henry H, Béard E, Uldry J (2011) Creatine deficiency syndromes and the importance of creatine synthesis in the brain. Amino Acids 40:1315–1324

    Article  PubMed  CAS  Google Scholar 

  • Brosnan JT, Brosnan ME (2010) Creatine metabolism and urea cycle. Mol Genet Metab 100:49–52

    Article  Google Scholar 

  • Brosnan JT, da Silva RP, Brosnan ME (2007) Amino acids and the regulation of methyl balance in humans. Curr Opin Clin Nutr Metab Care 10:52–57

    Article  PubMed  CAS  Google Scholar 

  • Brosnan JT, da Silva RP, Brosnan ME (2011) The metabolic burden of creatine synthesis. Aminoacids 40:1325–1331

    CAS  Google Scholar 

  • Brusilow SW, Batshaw ML (1979) Arginine therapy of argininosuccinase deficiency. Lancet 1:124–127

    Article  PubMed  CAS  Google Scholar 

  • Brusilow SW, Horwich AL (2001) Urea cycle enzymes. In: Scriver CR, Beaudet AL, Sly SW, Valle D (eds) The Metabolic and molecular bases of inherited diseasers. McGraw Hill, New York, pp 1909–1965

    Google Scholar 

  • Choi CG, Yoo HV (2001) Localized proton MR spectroscopy in infants with urea cycle defect. Am J Neuroradiol 22: 834–837

    Google Scholar 

  • Deignan JL, De Deyn PP, Cederbaum SD, Fuchshuber A, Roth B, Gsell W, Marescau B (2010) Guanidino compound levels in blood, cerebrospinal fluid, and post-mortem brain material of patients with argininemia. Mol Genet Metab 100:31–36

    Article  Google Scholar 

  • Dionisi Vici C, Bachmann C, Gambarara M, Colombo JP, Sabetta G (1987) Hyperornithinemia-hyperammonemia-homocitrullinuria syndrome: low creatine excretion and effect of citrulline, arginine, or ornithine supplement. Pediatr Res 22:364–367

    Article  PubMed  CAS  Google Scholar 

  • Erez A, Nagamani SC, Lee B (2011a) Argininosuccinate lyase deficiency-argininosuccinic aciduria and beyond. Am J Med Genet C Semin Med Genet 157:45–53

    Article  PubMed  CAS  Google Scholar 

  • Erez A, Nagamani SC, Shchelochkov OA, Premkumar MH, Campeau PM, Chen Y, Garg HK, Li L, Mian A, Bertin TK, Black JO, Zeng H, Tang Y, Reddy AK, Summar M, O’Brien WE, Harrison DG, Mitch WE, Marini JC, Aschner JL, Bryan NS, Lee B (2011b) Requirement of argininosuccinate lyase for systemic nitric oxide production. Nat Med 17:1619–1626

    Article  PubMed  CAS  Google Scholar 

  • Fons C, Sempere A, Arias A, López-Sala A, Póo P, Pineda M, Mas A, Vilaseca MA, Salomons GS, Ribes A, Artuch R, Campistol J (2008) Arginine supplementation in four patients with X-linked creatine transporter defect. J Inher Metab Dis 31:724–728

    Article  PubMed  CAS  Google Scholar 

  • Gladwin MT, Tejero J (2011) Nitrite-NO bailout for a NOS complex too big to fail. Nat Med 17:1556–1557

    Article  PubMed  CAS  Google Scholar 

  • Gropman AL, Fricke ST, Seltzer RR, Hailu A, Adeyemo A, Sawyer A, van Meter J, Gaillard WD, McCarter R, Tuchman M, Batshaw M, Urea Cycle Disorders Consortium (2008) 1H MRSidentifies symptomatic and asymptomatic subjects with partial ornithine transcarbamylase deficiency. Mol Genet Metab 95:21–30

    Article  PubMed  CAS  Google Scholar 

  • Häberle J, Boddaert N, Burlina A, Chakrapani A, Dixon M, Huemer M, Karall D, Martinelli D, Sanjurjo Crespo P, Santer R, Servais A, Valayannopoulos V, Lindner M, Rubio V, Dionisi-Vici C (2012) Guideline for the Diagnosis and management of urea cycle disorders. Orphanet J Rare Dis (in press)

  • Heinänen K, Näntö-Salonen K, Komu M, Erkintalo M, Alanen A, Heinonen OJ, Pulkki K, Nikoskelainen E, Sipilä I, Simell O (1999a) Creatine corrects muscle 31P spectrum in gyrate atrophy with hyperornithinaemia. Eur J Clin Invest 29:1060–1065

    Article  PubMed  Google Scholar 

  • Heinänen K, Näntö-Salonen K, Komu M, Erkintalo M, Heinonen OJ, Pulkki K, Valtonen M, Nikoskelainen E, Alanen A, Simell O (1999b) Muscle creatine phosphate in gyrate atrophy of the choroid and retina with hyperornithinaemia - clues to pathogenesis. Eur J Clin Invest 29:426–431

    Article  PubMed  Google Scholar 

  • Item CB, Stöckler-Ipsiroglu S, Stromberger C, Mühl A, Alessandrì MG, Bianchi MC, Tosetti M, Fornai F, Cioni G (2001) Arginine:glycine amidinotransferase (AGAT) deficiency: the third inborn error of creatine metabolism in humans. Am J Hum Genet 69:1127–1133

    Article  PubMed  CAS  Google Scholar 

  • Mannucci L, Emma F, Markert M, Bachmann C, Boulat O, Carrozzo R, Rizzoni G, Dionisi-Vici C (2005) Increased NO production in lysinuric protein intolerance. J Inherit Metab Dis 28:123–129

    Article  PubMed  CAS  Google Scholar 

  • Marescau B, Lowenthal A, Terheggen HG, Esmans E, Alderweireldt F (1982) Guanidino compounds in hyperargininemia. Adv Exp Med Biol 153:427–434

    PubMed  CAS  Google Scholar 

  • Martinelli D, Häberle J, Rubio V, Giunta C, Hausser I, Carrozzo R, Gougeard N, Marco-Marín C, Goffredo BM, Meschini MC, Bevivino E, Boenzi S, Colafati GS, Brancati F, Baumgartner MR, Dionisi-Vici C (2011) Understanding pyrroline-5-carboxylate synthetase deficiency: clinical, molecular, functional, and expression studies, structure-based analysis, and novel therapy with arginine. J Inherit Metab Dis [Epub ahead of print]

  • Moncada S, Higgs A (1993) The L-arginine-nitric oxide pathway. N Engl J Med 329:2002–2012

    Article  PubMed  CAS  Google Scholar 

  • Morini C, Capozzi P, Boenzi S, Rizzo C, Santorelli FM, Dionisi-Vici C (2009) Retinal degeneration. Ophthalmology 116:1593–1593

    Article  PubMed  Google Scholar 

  • Morris SM Jr (2006) Arginine: beyond protein. Am J Clin Nutr 83:508S–512S

    PubMed  CAS  Google Scholar 

  • Mudd SH, Brosnan JT, Brosnan ME, Jacobs RL, Stabler SP, Allen RH, Vance DE, Wagner C (2007) Methyl balance and transmethylation fluxes in humans. Am J Clin Nutr 85:19–25

    PubMed  CAS  Google Scholar 

  • Nänto-Salonen K, Komu M, Lundbom N, Heinänen K, Alanen A, Sipilä I, Simell O (1999) Reduced brain creatine in gyrate atrophy of the choroid and retina with hyperornithinemia. Neurology 53:303–307

    Article  PubMed  Google Scholar 

  • Ogier de Baulny H, Schiff M, Dionisi-Vici C (2012) Lysinuric protein intolerance (LPI): a multi organ disease by far more complex than a usual urea cycle disorder. Mol Genet Metab 106:12–17

    Article  PubMed  CAS  Google Scholar 

  • Roze E, Azuar C, Menuel C, Häberle J, Guillevin R (2007) Usefulness of magnetic resonance spectroscopy in urea cycle disorders. Pediatr Neurol 37:222–225

    Article  PubMed  Google Scholar 

  • Salomons GS, van Dooren SJ, Verhoeven NM, Cecil KM, Ball WS, Degrauw TJ, Jakobs C (2001) X-linked creatine transporter gene (SLC6A8) defect: a new creatine-deficiency syndrome. Am J Hum Genet 68:1497–1500

    Article  PubMed  CAS  Google Scholar 

  • Schulze A, Ebinger F, Rating D, Mayatepek E (2001) Improving treatment of guanidinoacetate methyltransferase deficiency: reduction of guanidinoacetic acid in body fluids by arginine restriction and ornithine supplementation. Mol Genet Metab 74:413–419

    Article  PubMed  CAS  Google Scholar 

  • Sipilä I, Simell O, Arjomaa P (1980) Gyrate atrophy of the choroid and retina with hyperornithinemia. Deficient formation of guanidinoacetic acid from arginine. J Clin Invest 66:684–687

    Article  PubMed  Google Scholar 

  • Smith DW, Scriver CR, Tenenhouse HS, Simell O (1987) Lysinuric protein intolerance mutation is expressed in the plasma membrane of cultured skin fibroblasts. Proc Natl Acad Sci 84:7711–7715

    Article  PubMed  CAS  Google Scholar 

  • Stockler S, Isbrandt D, Hanefeld F, Schmidt B, von Figura F (1996) Guanidinoacetate methyltransferse deficiency: the first inborn error of creatine metabolism in man. Am J Hum Genet 58:914–922

    PubMed  CAS  Google Scholar 

  • Takanashi J, Kurihara A, Tomita M, Kanazawa M, Yamamoto S, Morita F, Ikehira H, Tanada S, Kohno Y (2002) Distinctly abnormal brain metabolism in late-onset ornithine transcarbamylase deficiency. Neurology 59:210–214

    Article  PubMed  CAS  Google Scholar 

  • Valayannopoulos V, Boddaert N, Mention K, Touati G, Barbier V, Chabli A, Sedel F, Kaplan J, Dufier JL, Seidenwurm D, Rabier D, Saudubray JM, de Lonlay P (2009) Secondary creatine deficiency in ornithine delta-amidinotransferase deficiency. Mol Genet Metab 97:109–113

    Article  PubMed  CAS  Google Scholar 

  • Valayannopoulos V, Boddaert N, Chabli A, Barbier V, Desguerre I, Philippe A, Afenjar A, Mazzuca M, Cheillan D, Munnich A, de Keyzer Y, Jakobs C, Salomons GS, de Lonlay P (2012) Treatment by oral creatine, L-arginine and L-glycine in six severely affected patients with creatine transporter defect. J Inherit Metab Dis 35:151–157

    Article  PubMed  CAS  Google Scholar 

  • van de Kamp JM, Pouwels PJ, Aarsen FK, ten Hoopen LW, Knol DL, de Klerk JB, de Coo IF, Huijmans JG, Jakobs C, van der Knaap MS, Salomons GS, Mancini GM (2012) Long-term follow-up and treatment in nine boys with X-linked creatine transporter defect. J Inherit Metab Dis 35:141–149

    Article  PubMed  Google Scholar 

  • van Spronsen FJ, Reijngoud DJ, Verhoeven NM, Soorani-Lunsing RJ, Jakobs C, Sijens PE (2006) High cerebral guanidinoacetate and variable creatine concentrations in argininosuccinate synthetase and lyase deficiency: implications for treatment? Mol Genet Metab 89:274–276

    Article  PubMed  Google Scholar 

  • Verhoeven NM, Salomons GS, Jakobs C (2005) Laboratory diagnosis of defects of creatine biosynthesis and transport. Clin Chim Acta 361:1–9

    Article  PubMed  CAS  Google Scholar 

  • Wyss M, Kaddurah-Daouk R (2000) Creatine and creatinine metabolism. Physiol Rev 80:1107–1213

    PubMed  CAS  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Dionisi-Vici.

Additional information

Communicated by: Eva Morava

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boenzi, S., Pastore, A., Martinelli, D. et al. Creatine metabolism in urea cycle defects. J Inherit Metab Dis 35, 647–653 (2012). https://doi.org/10.1007/s10545-012-9494-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-012-9494-x

Keywords

Navigation