Skip to main content
Log in

Oxidative stress in Phenylketonuria: future directions

  • Review
  • Published:
Journal of Inherited Metabolic Disease

Abstract

Phenylketonuria represents the most prevalent inborn error of amino acid metabolism. In early diagnosed patients adequate and continued dietary treatment results in a good neurologic outcome. Natural protein and phenylalanine-restricted diet, even if rich in fruits and vegetables, represents a serious risk for nutritional deficiencies, albeit universally accepted. In the last few years, a growing number of reports have been describing oxidative stress as a concern in phenylketonuric patients. The diet itself includes good sources of dietary antioxidants (phytochemicals, some vitamins and minerals) but also a risk factor for some deficiencies (selenium, zinc, ubiquinone-10 and L-carnitine). Additionally, the extreme stringency of the diet may impose a reduced synthesis of endogenous antioxidants (like ubiquinone-10 and glutathione). Furthermore, increased phenylalanine levels, and its metabolites, may enhance the endogenous synthesis of reactive species and free radicals and/or interfere with the endogenous synthesis of enzymatic antioxidants (like glutathione peroxidase). Therefore, oxidative stress will probably increase, mainly in late diagnosed patients or in those with bad metabolic control. Considering the known association between oxidative stress, obesity and cardiovascular disease, it seems advisable to look further to the impact of oxidative stress on body macromolecules and structures (like lipoprotein oxidation), especially in phenylketonuric patients with late diagnosis or bad metabolic control, in order to prevent future increased risks. Recommendations for PKU patient’s clinical follow-up improvement and educational goals are included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

CAT:

Catalase

GSH-px:

Glutathione peroxidase

HDL:

High density lipoprotein

LDL:

Low density lipoprotein

Phe:

L-Phenylalanine

PKU:

Phenylketonuria

PON:

Paraoxonase

PON1:

Paraoxonase 1

Q10:

Ubiquinone-10; coenzyme Q10

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

RS:

Reactive species

Se:

Selenium

SOD:

Superoxide dismutase

TBARS:

Thiobarbituric acid-reactive species

Zn:

Zinc

References

  • Ando K, Fujita T (2009) Metabolic syndrome and oxidative stress. Free Radic Biol Med 47:213–218

    Article  PubMed  CAS  Google Scholar 

  • Artuch R, Vilaseca MA, Moreno J, Lambruschini N, Cambra FJ, Campistol J (1999) Decreased serum ubiquinone-10 concentrations in phenylketonuria. Am J Clin Nutr 70:892–895

    PubMed  CAS  Google Scholar 

  • Artuch R, Colome C, Vilaseca MA et al. (2001) Plasma phenylalanine is associated with decreased serum ubiquinone-10 concentrations in phenylketonuria. J Inherit Metab Dis 24:359–366

    Article  PubMed  CAS  Google Scholar 

  • Artuch R, Colome C, Sierra C et al. (2004) A longitudinal study of antioxidant status in phenylketonuric patients. Clin Biochem 37:198–203

    Article  PubMed  CAS  Google Scholar 

  • Aviram M, Kaplan M, Rosenblat M, Fuhrman B (2005) Dietary antioxidants and paraoxonases against LDL oxidation and atherosclerosis development. Handb Exp Pharmacol: 263–300

  • Bao B, Prasad AS, Beck FW et al. (2010) Zinc decreases C-reactive protein, lipid peroxidation, and inflammatory cytokines in elderly subjects: a potential implication of zinc as an atheroprotective agent. Am J Clin Nutr 91:1634–1641

    Article  PubMed  CAS  Google Scholar 

  • Barretto JR, Silva LR, Leite ME et al. (2008) Poor zinc and selenium status in phenylketonuric children and adolescents in Brazil. Nutr Res 28:208–211

    Article  PubMed  CAS  Google Scholar 

  • Bergamini CM, Gambetti S, Dondi A, Cervellati C (2004) Oxygen, reactive oxygen species and tissue damage. Curr Pharm Des 10:1611–1626

    Article  PubMed  CAS  Google Scholar 

  • Blau N, van Spronsen FJ, Levy HL (2010) Phenylketonuria. Lancet 376:1417–1427

    Article  PubMed  CAS  Google Scholar 

  • Bullon P, Morillo JM, Ramirez-Tortosa MC, Quiles JL, Newman HN, Battino M (2009) Metabolic syndrome and periodontitis: is oxidative stress a common link? J Dent Res 88:503–518

    Article  PubMed  CAS  Google Scholar 

  • Butler JA, Beilstein MA, Whanger PD (1989) Influence of dietary methionine on the metabolism of selenomethionine in rats. J Nutr 119:1001–1009

    PubMed  CAS  Google Scholar 

  • Campistol J, Perez-Duenas B, Montero R, Artuch R, Conill J, Vilaseca MA (2006) Coenzyme Q10 deficiency seems to be implicated in the pathophysiology of tremor in patients with phenylketonuria. J Inherit Metab Dis 29(suppl 1):96

    Google Scholar 

  • Camps J, Marsillach J, Joven J (2009) The paraoxonases: role in human diseases and methodological difficulties in measurement. Crit Rev Clin Lab Sci 46:83–106

    Article  PubMed  CAS  Google Scholar 

  • Castillo M, Zafra MF, Garcia-Peregrin E (1988) Inhibition of brain and liver 3-hydroxy-3-methylglutaryl-CoA reductase and mevalonate-5-pyrophosphate decarboxylase in experimental hyperphenylalaninemia. Neurochem Res 13:551–555

    Article  PubMed  CAS  Google Scholar 

  • Castillo M, Iglesias J, Zafra MF, Garcia-Peregrin E (1991a) Inhibition of chick brain cholesterogenic enzymes by phenyl and phenolic derivatives of phenylalanine. Neurochem Int 18:171–174

    Article  PubMed  CAS  Google Scholar 

  • Castillo M, Martinez-Cayuela M, Zafra MF, Garcia-Peregrin E (1991b) Effect of phenylalanine derivatives on the main regulatory enzymes of hepatic cholesterogenesis. Mol Cell Biochem 105:21–25

    Article  PubMed  CAS  Google Scholar 

  • Colomé C, Artuch R, Lambruschini N, Cambra FJ, Campistol J, Vilaseca M (2001) Is there a relationship between plasma phenylalanine and cholesterol in phenylketonuric patients under dietary treatment? Clin Biochem 34:373–376

    Article  PubMed  Google Scholar 

  • Colomé C, Artuch R, Vilaseca MA et al. (2002) Ubiquinone-10 content in lymphocytes of phenylketonuric patients. Clin Biochem 35:81–84

    Article  PubMed  Google Scholar 

  • Colomé C, Artuch R, Vilaseca MA et al. (2003) Lipophilic antioxidants in patients with phenylketonuria. Am J Clin Nutr 77:185–188

    PubMed  Google Scholar 

  • Craig WJ, Mangels AR (2009) Position of the American Dietetic Association: vegetarian diets. J Am Diet Assoc 109:1266–1282

    Article  PubMed  CAS  Google Scholar 

  • Crozier A, Jaganath IB, Clifford MN (2009) Dietary phenolics: chemistry, bioavailability and effects on health. Nat Prod Rep 26:1001–1043

    Article  PubMed  CAS  Google Scholar 

  • de Groot MJ, Hoeksma M, Blau N, Reijngoud DJ, van Spronsen FJ (2010) Pathogenesis of cognitive dysfunction in phenylketonuria: review of hypotheses. Mol Genet Metab 99(Suppl 1):S86–S89

    Article  PubMed  Google Scholar 

  • DiSilvestro RA, Blostein-Fujii A (1997) Moderate zinc deficiency in rats enhances lipoprotein oxidation in vitro. Free Radic Biol Med 22:739–742

    Article  PubMed  CAS  Google Scholar 

  • Efrat M, Aviram M (2010) Paraoxonase 1 interactions with HDL, antioxidants and macrophages regulate atherogenesis - a protective role for HDL phospholipids. Adv Exp Med Biol 660:153–166

    Article  PubMed  CAS  Google Scholar 

  • Enns GM, Koch R, Brumm V, Blakely E, Suter R, Jurecki E (2010) Suboptimal outcomes in patients with PKU treated early with diet al.one: revisiting the evidence. Mol Genet Metab 101:99–109

    Article  PubMed  CAS  Google Scholar 

  • Farbstein D, Kozak-Blickstein A, Levy AP (2010) Antioxidant vitamins and their use in preventing cardiovascular disease. Molecules 15:8098–8110

    Article  PubMed  CAS  Google Scholar 

  • Feillet F, Agostoni C (2010) Nutritional issues in treating phenylketonuria. J Inherit Metab Dis 33:659–664

    Article  PubMed  CAS  Google Scholar 

  • Fernandes CG, Leipnitz G, Seminotti B et al. (2010) Experimental evidence that phenylalanine provokes oxidative stress in hippocampus and cerebral cortex of developing rats. Cell Mol Neurobiol 30:317–326

    Article  PubMed  CAS  Google Scholar 

  • Fisberg RM, Da Silva-Femandes ME, Fisberg M, Schmidt BJ (1999) Plasma zinc, copper, and erythrocyte superoxide dismutase in children with phenylketonuria. Nutrition 15:449–452

    Article  PubMed  CAS  Google Scholar 

  • Florentin M, Liberopoulos EN, Wierzbicki AS, Mikhailidis DP (2008) Multiple actions of high-density lipoprotein. Curr Opin Cardiol 23:370–378

    Article  PubMed  Google Scholar 

  • Fritz IB, Arrigoni-Martelli E (1993) Sites of action of carnitine and its derivatives on the cardiovascular system: interactions with membranes. Trends Pharmacol Sci 14:355–360

    Article  PubMed  CAS  Google Scholar 

  • Furukawa S, Fujita T, Shimabukuro M et al. (2004) Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 114:1752–1761

    PubMed  CAS  Google Scholar 

  • Garin MC, Kalix B, Morabia A, James RW (2005) Small, dense lipoprotein particles and reduced paraoxonase-1 in patients with the metabolic syndrome. J Clin Endocrinol Metab 90:2264–2269

    Article  PubMed  CAS  Google Scholar 

  • Getz GS, Reardon CA (2004) Paraoxonase, a cardioprotective enzyme: continuing issues. Curr Opin Lipidol 15:261–267

    Article  PubMed  CAS  Google Scholar 

  • Gropper SS, Gropper DM, Acosta PB (1993) Plasma amino acid response to ingestion of L-amino acids and whole protein. J Pediatr Gastroenterol Nutr 16:143–150

    Article  PubMed  CAS  Google Scholar 

  • Güllçin I (2006) Antioxidant and antiradical activities of L-carnitine. Life Sci 78:803–811

    Article  Google Scholar 

  • Haldar S, Rowland IR, Barnett YA et al. (2007) Influence of habitual diet on antioxidant status: a study in a population of vegetarians and omnivores. Eur J Clin Nutr 61:1011–1022

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine. Clarendon Press, Oxford

    Google Scholar 

  • Hansel B, Kontush A, Bonnefont-Rousselot D, Bruckert E, Chapman MJ (2006) Alterations in lipoprotein defense against oxidative stress in metabolic syndrome. Curr Atheroscler Rep 8:501–509

    Article  PubMed  CAS  Google Scholar 

  • Hargreaves IP (2007) Coenzyme Q10 in phenylketonuria and mevalonic aciduria. Mitochondrion 7(Suppl):S175–S180

    Article  PubMed  CAS  Google Scholar 

  • Hargreaves IP, Heales SJ, Briddon A, Land JM, Lee PJ (2002) Blood mononuclear cell coenzyme Q10 concentration and mitochondrial respiratory chain succinate cytochrome-c reductase activity in phenylketonuric patients. J Inherit Metab Dis 25:673–679

    Article  PubMed  CAS  Google Scholar 

  • Herbert V (1994) The antioxidant supplement myth. Am J Clin Nutr 60:157–158

    PubMed  CAS  Google Scholar 

  • Holvoet P, De Keyzer D, Jacobs DR (2008a) Oxidized LDL and the metabolic syndrome. Future Lipidol 3:637–649

    Article  PubMed  CAS  Google Scholar 

  • Holvoet P, Lee DH, Steffes M, Gross M, Jacobs DR Jr (2008b) Association between circulating oxidized low-density lipoprotein and incidence of the metabolic syndrome. JAMA 299:2287–2293

    Article  PubMed  CAS  Google Scholar 

  • Hopps E, Noto D, Caimi G, Averna MR (2010) A novel component of the metabolic syndrome: the oxidative stress. Nutr Metab Cardiovasc Dis 20:72–77

    Article  PubMed  CAS  Google Scholar 

  • Jochum F, Terwolbeck K, Meinhold H, Behne D, Menzel H, Lombeck I (1997) Effects of a low selenium state in patients with phenylketonuria. Acta Paediatr 86:775–777

    Article  PubMed  CAS  Google Scholar 

  • Key TJ, Appleby PN, Rosell MS (2006) Health effects of vegetarian and vegan diets. Proc Nutr Soc 65:35–41

    Article  PubMed  CAS  Google Scholar 

  • Kyprianou N, Murphy E, Lee P, Hargreaves I (2009) Assessment of mitochondrial respiratory chain function in hyperphenylalaninaemia. J Inherit Metab Dis 32:289–296

    Article  PubMed  CAS  Google Scholar 

  • Lindsay DG, Astley SB (2002) European research on the functional effects of dietary antioxidants - EUROFEDA. Mol Aspects Med 23:1–38

    Article  PubMed  CAS  Google Scholar 

  • Lombeck I, Menzel H, Steiner G, Kasperek K (1982) Selenium supplementation: plasma glutathione peroxidase an indicator of selenium intake. Klin Padiatr 194:303–305

    Article  PubMed  CAS  Google Scholar 

  • Lonnerdal B (1997) Effects of milk and milk components on calcium, magnesium, and trace element absorption during infancy. Physiol Rev 77:643–669

    PubMed  CAS  Google Scholar 

  • Lu J, Holmgren A (2009) Selenoproteins. J Biol Chem 284:723–727

    Article  PubMed  CAS  Google Scholar 

  • MacDonald A, Rylance G, Davies P, Asplin D, Hall SK, Booth IW (2003) Free use of fruits and vegetables in phenylketonuria. J Inherit Metab Dis 26:327–338

    Article  PubMed  CAS  Google Scholar 

  • Macdonald A, Rocha JC, van Rijn M, Feillet F (2011) Nutrition in phenylketonuria. Mol Genet Metab

  • Martindale JL, Holbrook NJ (2002) Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol 192:1–15

    Article  PubMed  CAS  Google Scholar 

  • McCord JM (2000) The evolution of free radicals and oxidative stress. Am J Med 108:652–659

    Article  PubMed  CAS  Google Scholar 

  • Moyle JJ, Fox AM, Arthur M, Bynevelt M, Burnett JR (2007) Meta-analysis of neuropsychological symptoms of adolescents and adults with PKU. Neuropsychol Rev 17:91–101

    Article  PubMed  CAS  Google Scholar 

  • Ng CJ, Wadleigh DJ, Gangopadhyay A et al. (2001) Paraoxonase-2 is a ubiquitously expressed protein with antioxidant properties and is capable of preventing cell-mediated oxidative modification of low density lipoprotein. J Biol Chem 276:44444–44449

    Article  PubMed  CAS  Google Scholar 

  • Pardridge WM (1977) Kinetics of competitive inhibition of neutral amino acid transport across the blood-brain barrier. J Neurochem 28:103–108

    Article  PubMed  CAS  Google Scholar 

  • Prasad AS (2009) Zinc: role in immunity, oxidative stress and chronic inflammation. Curr Opin Clin Nutr 12:646–652

    Article  CAS  Google Scholar 

  • Prasad AS, Bao B, Beck FW, Kucuk O, Sarkar FH (2004) Antioxidant effect of zinc in humans. Free Radic Biol Med 37:1182–1190

    Article  PubMed  CAS  Google Scholar 

  • Précourt LP, Amre D, Denis MC et al. (2010) The three-gene paraoxonase family: physiologic roles, actions and regulation. Atherosclerosis 214:20–36

    Article  PubMed  Google Scholar 

  • Ribas GS, Sitta A, Wajner M, Vargas CR (2011) Oxidative stress in phenylketonuria: what is the evidence? Cell Mol Neurobiol 31:653–662

    Article  PubMed  CAS  Google Scholar 

  • Rizzo M, Kotur-Stevuljevic J, Berneis K et al. (2009) Atherogenic dyslipidemia and oxidative stress: a new look. Transl Res 153:217–223

    Article  PubMed  CAS  Google Scholar 

  • Robinson M, White FJ, Cleary MA, Wraith E, Lam WK, Walter JH (2000) Increased risk of vitamin B12 deficiency in patients with phenylketonuria on an unrestricted or relaxed diet. J Pediatr 136:545–547

    Article  PubMed  CAS  Google Scholar 

  • Rocha JC, Martel F (2009) Large neutral amino acids supplementation in phenylketonuric patients. J Inherit Metab Dis 32:472–480

    Article  PubMed  CAS  Google Scholar 

  • Sanayama Y, Nagasaka H, Takayanagi M, et al. (2011) Experimental evidence that phenylalanine is strongly associated to oxidative stress in adolescents and adults with phenylketonuria. Mol Genet Metab

  • Schulpis KH, Nounopoulos C, Scarpalezou A, Bouloukos A, Missiou-Tsagarakis S (1990) Serum carnitine level in phenylketonuric children under dietary control in Greece. Acta Paediatr Scand 79:930–934

    Article  PubMed  CAS  Google Scholar 

  • Schulpis KH, Tsakiris S, Karikas GA, Moukas M, Behrakis P (2003) Effect of diet on plasma total antioxidant status in phenylketonuric patients. Eur J Clin Nutr 57:383–387

    Article  PubMed  CAS  Google Scholar 

  • Schulpis KH, Karakonstantakis T, Bartzeliotou A, Karikas GA, Papassotiriou I (2004) The association of serum lipids, lipoproteins and apolipoproteins with selected trace elements and minerals in phenylketonuric patients on diet. Clin Nutr 23:401–407

    Article  PubMed  CAS  Google Scholar 

  • Schulpis KH, Tsakiris S, Traeger-Synodinos J, Papassotiriou I (2005) Low total antioxidant status is implicated with high 8-hydroxy-2-deoxyguanosine serum concentrations in phenylketonuria. Clin Biochem 38:239–242

    Article  PubMed  CAS  Google Scholar 

  • Schulpis KH, Bartzeliotou A, Tsakiris S, Gounaris A, Papassotiriou I (2007) Serum paraoxonase/arylesterase activities in phenylketonuric patients on diet. Eur J Clin Nutr 61:803–808

    Article  PubMed  CAS  Google Scholar 

  • Schulpis KH, Papastamataki M, Stamou H, Papassotiriou I, Margeli A (2010) The effect of diet on total antioxidant status, ceruloplasmin, transferrin and ferritin serum levels in phenylketonuric children. Acta Paediatr 99:1565–1570

    Article  PubMed  CAS  Google Scholar 

  • Scriver CR, Kaufman S (2001) Hyperphenylalaninemia: phenylalanine hydroxylase deficiency. In: Scriver CR, Sly WS (eds) The metabolic & molecular bases of inherited disease, vol 2, 8th edn. McGraw-Hill, New York, pp 1667–1724

    Google Scholar 

  • Seifried HE, Anderson DE, Fisher EI, Milner JA (2007) A review of the interaction among dietary antioxidants and reactive oxygen species. J Nutr Biochem 18:567–579

    Article  PubMed  CAS  Google Scholar 

  • Sierra C, Vilaseca MA, Moyano D et al. (1998) Antioxidant status in hyperphenylalaninemia. Clin Chim Acta 276:1–9

    Article  PubMed  CAS  Google Scholar 

  • Sirtori LR, Dutra-Filho CS, Fitarelli D et al. (2005) Oxidative stress in patients with phenylketonuria. Biochim Biophys Acta 1740:68–73

    PubMed  CAS  Google Scholar 

  • Sitta A, Barschak AG, Deon M et al. (2006) Investigation of oxidative stress parameters in treated phenylketonuric patients. Metab Brain Dis 21:287–296

    Article  PubMed  CAS  Google Scholar 

  • Sitta A, Barschak AG, Deon M et al. (2009a) Effect of short- and long-term exposition to high phenylalanine blood levels on oxidative damage in phenylketonuric patients. Int J Dev Neurosci 27:243–247

    Article  PubMed  CAS  Google Scholar 

  • Sitta A, Barschak AG, Deon M et al. (2009b) L-carnitine blood levels and oxidative stress in treated phenylketonuric patients. Cell Mol Neurobiol 29:211–218

    Article  PubMed  CAS  Google Scholar 

  • Sitta A, Manfredini V, Biasi L et al. (2009c) Evidence that DNA damage is associated to phenylalanine blood levels in leukocytes from phenylketonuric patients. Mutat Res 679:13–16

    PubMed  CAS  Google Scholar 

  • Sitta A, Vanzin CS, Biancini GB et al. (2011) Evidence that L-carnitine and selenium supplementation reduces oxidative stress in phenylketonuric patients. Cell Mol Neurobiol 31:429–436

    Article  PubMed  CAS  Google Scholar 

  • Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1–40

    Article  PubMed  CAS  Google Scholar 

  • Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    Article  PubMed  CAS  Google Scholar 

  • van Bakel MM, Printzen G, Wermuth B, Wiesmann UN (2000) Antioxidant and thyroid hormone status in selenium-deficient phenylketonuric and hyperphenylalaninemic patients. Am J Clin Nutr 72:976–981

    PubMed  Google Scholar 

  • van Spronsen FJ, Enns GM (2010) Future treatment strategies in phenylketonuria. Mol Genet Metab 99(Suppl 1):S90–S95

    Article  PubMed  Google Scholar 

  • van Spronsen FJ, Hoeksma M, Reijngoud DJ (2009) Brain dysfunction in phenylketonuria: is phenylalanine toxicity the only possible cause? J Inherit Metab Dis 32:46–51

    Article  PubMed  Google Scholar 

  • Wajner M, Latini A, Wyse AT, Dutra-Filho CS (2004) The role of oxidative damage in the neuropathology of organic acidurias: insights from animal studies. J Inherit Metab Dis 27:427–448

    Article  PubMed  CAS  Google Scholar 

  • Walter JH, White FJ (2004) Blood phenylalanine control in adolescents with phenylketonuria. Int J Adolesc Med Health 16:41–45

    PubMed  Google Scholar 

  • Walter JH, White FJ, Hall SK et al. (2002) How practical are recommendations for dietary control in phenylketonuria? Lancet 360:55–57

    Article  PubMed  CAS  Google Scholar 

  • Weber C, Bysted A, Hllmer G (1997a) The coenzyme Q10 content of the average Danish diet. Int J Vitam Nutr Res 67:123–129

    PubMed  CAS  Google Scholar 

  • Weber C, Bysted A, Holmer G (1997b) Coenzyme Q10 in the diet–daily intake and relative bioavailability. Mol Aspects Med 18(Suppl):S251–S254

    Article  PubMed  CAS  Google Scholar 

  • Wilke BC, Vidailhet M, Favier A et al. (1992) Selenium, glutathione peroxidase (GSH-Px) and lipid peroxidation products before and after selenium supplementation. Clin Chim Acta 207:137–142

    Article  PubMed  CAS  Google Scholar 

  • Willett WC, MacMahon B (1984a) Diet and cancer–an overview. N Engl J Med 310:633–638

    Article  PubMed  CAS  Google Scholar 

  • Willett WC, MacMahon B (1984b) Diet and cancer–an overview (second of two parts). N Engl J Med 310:697–703

    Article  PubMed  CAS  Google Scholar 

  • Witztum JL, Steinberg D (2001) The oxidative modification hypothesis of atherosclerosis: does it hold for humans? Trends Cardiovas Med 11:93–102

    Article  CAS  Google Scholar 

  • Young IS, Woodside JV (2001) Antioxidants in health and disease. J Clin Pathol 54:176–186

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Fátima Santos, Isabel Azevedo and Tiago Martins for carefully reading the manuscript.

Details of funding

There was no financial support for this article.

Competing interest statement

Júlio César Rocha is a member of the Merck Serono European Nutritionist Expert Panel in Phenylketonuria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Júlio César Rocha.

Additional information

Communicated by: K. Michael Gibson

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rocha, J.C., Martins, M.J. Oxidative stress in Phenylketonuria: future directions. J Inherit Metab Dis 35, 381–398 (2012). https://doi.org/10.1007/s10545-011-9417-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-011-9417-2

Keywords

Navigation