Skip to main content

Advertisement

Log in

HILIC-UPLC-MS for high throughput and isomeric N-glycan separation and characterization in Congenital Disorders Glycosylation and human diseases

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

N-glycan analyses may serve uncovering disease-associated biomarkers, as well as for profiling distinctive changes supporting diagnosis of genetic disorders of glycan biosynthesis named congenital disorders of glycosylation (CDG). Strategies based on liquid chromatography (LC) preferentially coupled to electrospray ionization (ESI) - mass spectrometry (MS) have emerged as powerful analytical methods for N-glycan identification and characterization. To enhance detection sensitivity, glycans are commonly labelled with a functional tag prior to LC-MS analysis. Since most derivatization techniques are notoriously time-consuming, some commercial analytical kits have been developed to speed up N-deglycosylation and N-glycan labelling of glycoproteins of pharmaceutical and biological interest such as monoclonal antibodies (mAbs). We exploited the analytical capabilities of RapiFluor-MS (RFMS) to perform, by a slightly modified protocol, a detailed N-glycan characterization of total serum and single serum glycoproteins from specific patients with CDG (MAN1B1-CDG, ALG12-CDG, MOGS-CDG, TMEM199-CDG). This strategy, accomplished by Hydrophilic Interaction Chromatography (HILIC)-UPLC-ESI-MS separation of the RFMS derivatized N-glycans, allowed us to uncover structural details of patients serum released N-glycans, thus extending the current knowledge on glycan profiles in these individual glycosylation diseases. The applied methodology enabled to differentiate in some cases either structural isomers and isomers differing in the linkage type. All the here reported applications demonstrated that RFMS method, coupled to HILIC-UPLC-ESI-MS, represents a sensitive high throughput approach for serum N-glycome analysis and a valuable option for glycan detection and separation particularly for isomeric species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ben-Dor, S., Esterman, N., Rubin, E., Sharon, N.: Biases and complex patterns in the residues flanking protein N-glycosylation sites. Glycobiology. 14, 95–101 (2004)

    CAS  PubMed  Google Scholar 

  2. Varki, A., Cummings, R.D., Esko, J.D., Freeze, H.H., Stanley, P., Bertozzi, C.R., Hart, G.W., Etzler, M.E.: Essentials of Glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (NY) (2009)

  3. Fuster, M.M., Esko, J.D.: The sweet and sour of cancer: glycans as novel therapeutic targets. Nat. Rev. Cancer 5, 526–542 (2005)

    CAS  PubMed  Google Scholar 

  4. Adamczyk, B., Tharmalingam, T., Rudd, P.M.: Glycans as cancer biomarkers. BBA-Gen. Subjects. 1820, 1347–1353 (2012)

    CAS  Google Scholar 

  5. Barone, R., Sturiale, L., Palmigiano, A., Zappia, M., Garozzo, D.: Glycomics of pediatric and adulthood diseases of the central nervous system. J. Proteomics. 75, 5123–5139 (2012)

    CAS  PubMed  Google Scholar 

  6. Kizuka, Y., Kitazume, S., Fujinawa, R., Saito, T., Iwata, N., Saido, T.C., Nakano, M., Yamaguchi, Y., Hashimoto, Y., Staufenbiel, M., Hatsuta, S., Manya, H., Endo, T.: Taniguchi, N.: An aberrant sugar modification of BACE1 blocks its lysosomal targeting in Alzheimer’s disease. EMBO Mol. Med. 7, 175–189 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Palmigiano, A., Barone, R., Sturiale, L., Sanfilippo, C., Bua, R.O., Romeo, D.A., Messina, A., Capuana, M.L., Maci, T., Le Pira, F., Zappia, M., Garozzo, D.: CSF N-glycoproteomics for early diagnosis in Alzheimer’s disease. J. Proteomics. 131, 29–37 (2016)

    CAS  PubMed  Google Scholar 

  8. Kizuka, Y., Kitazume, S., Taniguchi, N.: N-glycan and Alzheimer’s disease. BBA-Gen Subjects. 1861, 2447–2454 (2017)

    CAS  Google Scholar 

  9. Karlsson, I., Ndreu, L., Quaranta, A., Thorsén, G.: Glycosylation patterns of selected proteins in individual serum and cerebrospinal fluid samples. J. Pharmaceut. Biomed. 145, 431–439 (2017)

    CAS  Google Scholar 

  10. Delves, P.J.: The role of glycosylation in autoimmune disease. Autoimmunity. 27, 239–253 (1998)

    CAS  PubMed  Google Scholar 

  11. Goulabchand, R., Vincent, T., Batteux, F., Eliaou, J.F., Guilpain, P.: Impact of autoantibody glycosylation in autoimmune diseases. Autoimmun. Rev. 13, 742–750 (2014)

    CAS  PubMed  Google Scholar 

  12. Butler, M., Quelhas, D., Critchley, A.J., Carchon, H., Hebestreit, H.F., Hibbert, R.G., Vilarinho, L., Teles, E., Matthijs, G., Schollen, E., Argibay, P., Harvey, D.J., Dwek, R.A., Jaeken, J., Rudd, P.M.: Detailed glycan analysis of serum glycoproteins of patients with congenital disorders of glycosylation indicates the specific defective glycan processing step and provides an insight into pathogenesis. Glycobiology. 13, 601–622 (2003)

    CAS  PubMed  Google Scholar 

  13. Freeze, H.H.: Genetic defects in the human glycome. Nat. Rev. Genet. 7, 537–551 (2006)

    CAS  PubMed  Google Scholar 

  14. Sparks, S.E.: Inherited disorders of glycosylation. Mol. Genet. Metab. 87, 1–7 (2006)

    CAS  PubMed  Google Scholar 

  15. Sturiale, L., Barone, R., Garozzo, D.: The impact of mass spectrometry in the diagnosis of congenital disorders of glycosylation. J. Inherit. Metab. Dis. 34, 891–899 (2011)

    CAS  PubMed  Google Scholar 

  16. Chang, I.J., He, M., Lam, C.T.: Congenital disorders of glycosylation. Ann. Trans. Med. 6 (2018)

  17. Ng, B.G., Freeze, H.H.: Perspectives on glycosylation and its congenital disorders. Trends Genet. 34, 466–476 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Shubhakar, A., Reiding, K.R., Gardner, R.A., Spencer, D.I., Fernandes, D.L., Wuhrer, M.: High-throughput analysis and automation for glycomics studies. Chromatographia. 78, 321–333 (2015)

    CAS  PubMed  Google Scholar 

  19. Gaunitz, S., Nagy, G., Pohl, N.L., Novotny, M.V.: Recent advances in the analysis of complex glycoproteins. Anal. Chem. 89, 389–413 (2017)

    CAS  PubMed  Google Scholar 

  20. Palmigiano, A., Messina, A., Sturiale, L., Garozzo, D.: Advanced LC-MS Methods for N-Glycan Characterization. In: Cappiello, A., Palma, P. (eds.). Comprehensive Analytical Chemistry Advances in the Use of Liquid Chromatography Mass Spectrometry (LCMS): Instrumentation Developments and Applications. 79, pp. 147–172. Elsevier B.V., Amsterdam (2018)

  21. Lauc, G., Essafi, A., Huffman, J.E., Hayward, C., Knezevic, A., Kattla, J.J., Polasek, O., Gornik, O., Vitart, V., Abrahams, J.L., Pucic, M., Novokmet, M., Redzic, I., Campbell, S., Wild, S.H., Borovecki, F., Wang, W., Kolcic, I., Zgaga, L., Gyllensten, U., Wilson, J.F., Wright, A.F., Hastie, N.D., Campbell, H., Rudd, P.M., Rudan, I.: Genomics meets glycomics-the first GWAS study of human N- Glycome identifies HNF1alpha as a master regulator of plasma protein fucosylation. PLoS Genet. 6, e1001256 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Ruhaak, L.R., Uh, H.W., Beekman, M., Hokke, C.H., Westendorp, R.G., Houwing-Duistermaat, J., Wuhrer, M., Deelder, A.M., Slagboom, P.E.: Plasma protein N-glycan profiles are associated with calendar age, familial longevity and health. J. Proteome Res. 10, 1667–1674 (2011)

    CAS  PubMed  Google Scholar 

  23. Lauc, G., Huffman, J.E., Pucic, M., Zgaga, L., Adamczyk, B., Muzinic, A., Novokmet, M., Polasek, O., Gornik, O., Kristic, J., Keser, T., Vitart, V., Scheijen, B., Uh, H.W., Molokhia, M., Patrick, A.L., McKeigue, P., Kolcic, I., Lukic, I.K., Swann, O., van Leeuwen, F.N., Ruhaak, L.R., Houwing-Duistermaat, J.J., Slagboom, P.E., Beekman, M., de Craen, A.J., Deelder, A.M., Zeng, Q., Wang, W., Hastie, N.D., Gyllensten, U., Wilson, J.F., Wuhrer, M., Wright, A.F., Rudd, P.M., Hayward, C., Aulchenko, Y., Campbell, H., Rudan, I.: Loci associated with N-glycosylation of human immunoglobulin G show pleiotropy with autoimmune diseases and haematological cancers. PLoS Genet. 9, e1003225 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ruhaak, L.R., Koeleman, C.A., Uh, H.W., Stam, J.C., van Heemst, D., Maier, A.B., Houwing- Duistermaat, J.J., Hensbergen, P.J., Slagboom, P.E., Deelder, A.M., Wuhrer, M.: Targeted biomarker discovery by high throughput glycosylation profiling of human plasma alpha1-antitrypsin and immunoglobulin A. PLoS One 8, e73082 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Staples, G.O., Bowman, M.J., Costello, C.E., Hitchcock, A.M., Lau, J.M., Leymarie, N., Miller, C., Naimi, H., Shi, X., Zaia, J.: A chip-based amide‐HILIC LC/MS platform for glycosaminoglycan glycomics profiling. Proteomics 9, 686–695 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Staples, G.O., Naimy, H., Yin, H., Kileen, K., Kraiczek, K., Costello, C.E., Zaia, J.: Improved hydrophilic interaction chromatography LC/MS of heparinoids using a chip with postcolumn makeup flow. Anal. Chem. 82, 516–522 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Reiding, K.R., Bondt, A., Hennig, R., Gardner, R.A., O’Flaherty, R., Trbojević-Akmačić, I., Shubhakar, A., Hazes, J.M.W., Reichl, U., Fernandes, D.L., Pucic-Bakovic, M., Rapp, E., Spencer, D.I.R., Dolhain, R.J.E.M., Rudd, P.M., Lauc, G., Wuhrer, M.: High-throughput serum N-glycomics: method comparison and application to study rheumatoid arthritis and pregnancy-associated changes. Mol. Cell. Proteomics. 18, 3–15 (2019)

    CAS  PubMed  Google Scholar 

  28. Zhang, T., Madunić, K., Holst, S., Zhang, J., Jin, C., ten Dijke, P., Karlsson, N.G., Stavenhagen, K., Wuhrer, M.: Development of a 96-well plate sample preparation method for integrated N-and O-glycomics using porous graphitized carbon liquid chromatography-mass spectrometry. Mol. Omics. (2020) https://doi.org/10.1039/C9MO00180H

    Article  PubMed  PubMed Central  Google Scholar 

  29. Klapoetke, S., Zhang, J., Becht, S., Gu, X., Ding, X.: The evaluation of a novel approach for the profiling and identification of N-linked glycan with a procainamide tag by HPLC with fluorescent and mass spectrometric detection. J. Pharmaceut. Biomed. 53, 315–324 (2010)

    CAS  Google Scholar 

  30. Kozak, R.P., Tortosa, C.B., Fernandes, D.L., Spencer, D.I.: Comparison of procainamide and 2-aminobenzamide labeling for profiling and identification of glycans by liquid chromatography with fluorescence detection coupled to electrospray ionization–mass spectrometry. Anal. Biochem. 486, 38–40 (2015)

    CAS  PubMed  Google Scholar 

  31. Lauber, M.A., Yu, Y.Q., Brousmiche, D.W., Hua, Z., Koza, S.M., Magnelli, P., Guthrie, E., Taron, C.H., Fountain, K.J.: Rapid preparation of released N-glycans for HILIC analysis using a labeling reagent that facilitates sensitive fluorescence and ESI-MS detection. Anal. Chem. 87, 5401–5409 (2015)

    CAS  PubMed  Google Scholar 

  32. Kimzey, M., Szabo, Z., Sharma, V., Gyenes, A., Tep, S., Taylor, A., Jones, A., Hyche, J., Haxo, T., Vlasenko, S.: Development of an instant glycan labeling dye for high throughput analysis by mass spectrometry. Prozyme. 25, 1295 (2015)

    Google Scholar 

  33. Zhou, S., Veillon, L., Dong, X., Huang, Y., Mechref, Y.: Direct comparison of derivatization strategies for LC-MS/MS analysis of N-glycans. Analyst. 142, 4446–4455 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Sturiale, L., Barone, R., Palmigiano, A., Ndosimao, C.N., Briones, P., Adamowicz, M., Jaeken, J., Garozzo, D.: Multiplexed glycoproteomic analysis of glycosylation disorders by sequential yolk immunoglobulins immunoseparation and MALDI-TOF MS. Proteomics. 8, 3822–3832 (2008)

    CAS  PubMed  Google Scholar 

  35. Ceroni, A., Maass, K., Geyer, H., Geyer, R., Dell, A., Haslam, S.M.: GlycoWorkbench: a tool for the computer-assisted annotation of mass spectra of glycans. J. Proteome Res. 7, 1650–1659 (2008)

    CAS  PubMed  Google Scholar 

  36. Rymen, D., Peanne, R., Millón, M.B., Race, V., Sturiale, L., Garozzo, D., Mills, P., Clayton, P., Asteggiano, C.G., Quelhas, D., Cansu, A., Martins, E., Nassogne, M.C., Gonçalves-Rocha, M., Topaloglu, H., Jaeken, J., Foulquier, F., Matthijs, G.: MAN1B1 deficiency: an unexpected CDG-II. PLoS Genet. 9 (2013) https://doi.org/10.1371/journal.pgen.1003989

  37. Van Scherpenzeel, M., Timal, S., Rymen, D., Hoischen, A., Wuhrer, M., Hipgrave-Ederveen, A., Grunewald, S., Peanne, R., Saada, A., Edvardson, S., Grønborg, S., Ruijter, G., Kattentidt-Mouravieva, A., Brum, J.M., Freckmann, M.L., Tomkins, S., Jalan, A., Prochazkova, D., Ondruskova, N., Hansikova, H., Willemsen, M.A., Hensbergen, P.J., Matthijs, G., Wevers, R.A., Veltman, J.A., Morava, E., Lefeber, D.J.: Diagnostic serum glycosylation profile in patients with intellectual disability as a result of MAN1B1 deficiency. Brain. 137, 1030–1038 (2014)

    PubMed  Google Scholar 

  38. Saldova, R., Stöckmann, H., O’Flaherty, R., Lefeber, D.J., Jaeken, J., Rudd, P.M.: N-Glycosylation of serum IgG and total glycoproteins in MAN1B1 deficiency. J. Proteome Res. 14, 4402–4412 (2015)

    CAS  PubMed  Google Scholar 

  39. Duvet, S., Mouajjah, D., Péanne, R., Matthijs, G., Raymond, K., Jaeken, J., Morava, E., Foulquier, F.: Use of endoglycosidase H as a diagnostic tool for MAN1B1-CDG patients. Electrophoresis. 39–3141 (2018)

  40. Barbosa, E.A., Fontes, N.D.C., Santos, S.C.L., Lefeber, D.J., Bloch, C., Brum, J.M., Brand, G.D.: Relative quantification of plasma N-glycans in type II congenital disorder of glycosylation patients by mass spectrometry. Clin. Chim. Acta. 492, 102–113 (2019)

    CAS  PubMed  Google Scholar 

  41. Costello, C.E., Contado-Miller, J.M., Cipollo, J.F.: A glycomics platform for the analysis of permethylated oligosaccharide alditols. J. Am. Soc. Mass Spectr. 18, 1799–1812 (2007)

    CAS  Google Scholar 

  42. Royle, L., Campbell, M.P., Radcliffe, C.M., White, D.M., Harvey, D.J., Abrahams, J.L., Kim, Y., Henry, G.W., Shadick, N.A., Weinblatt, M.E., Lee, D.M., Rudd, P.M., Dwek, R.A.: HPLC-based analysis of serum N-glycans on a 96-well plate platform with dedicated database software. Anal. Biochem. 376, 1–12 (2008)

    CAS  PubMed  Google Scholar 

  43. Zhao, P., Peng, X., Luo, S., Huang, Y., Tan, L., Shao, J., He, X.: Identification and characterization of novel mutations in MOGS in a Chinese patient with infantile spams. Neurogenetics. 21, 97–104 (2020)

    Google Scholar 

  44. Sadat, M.A., Moir, S., Chun, T.W., Lusso, P., Kaplan, G., Wolfe, L., Memoli, M.J., He, M., Vega, H., Kim, L.J.Y., Huang, Y., Hussein, N., Nievas, E., Mitchell, R., Garofalo, M., Louie, A., Ireland, D.C., Grunes, C., Cimbro, R., Patel, V., Holzapfel, G., Salahuddin, D., Bristol, T., Adams, D., Marciano, B.E., Hedge, M., Li, Y., Calvo, K.R., Stoddard, J., Justement, J.S., Jacques, J., Priel, D.A.L., Murray, D., Sun, P., Kuhns, D.B., Boerkoel, C.F., Chirini, J.A., Di Pasquale, G., Verthelyi, D., Rosenzweig, S.D.: Glycosylation, hypogammaglobulinemia, and resistance to viral infections. New Engl. J. Med. 370, 1615–1625 (2014)

    CAS  PubMed  Google Scholar 

  45. Jansen, J.C., Timal, S., Van Scherpenzeel, M., Michelakakis, H., Vicogne, D., Ashikov, A., Moraitou, M., Hoischen, A., Huijben, K., Steenbergen, G., van den Boogert, M.A., Porta, F., Calvo, P.L., Mavrikou, M., Cenacchi, G., van den Bogaart, G., Salomon, J., Holleboom, A.G., Rodenburg, R.J., Drenth, J.P., Huynen, M.A., Wevers, R.A., Morava, E., Foulquier, F., Veltman, J.A., Lefeber, D.J.: TMEM199 deficiency is a disorder of Golgi homeostasis characterized by elevated aminotransferases, alkaline phosphatase, and cholesterol and abnormal glycosylation. Am. J. Hum. Genet. 98, 322–330 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Vajro, P., Zielinska, K., Ng, B.G., Maccarana, M., Bengtson, P., Poeta, M., Mandato, C., D’Acunto, E., Freeze, H.H., Eklund, E.A.: Three unreported cases of TMEM199-CDG, a rare genetic liver disease with abnormal glycosylation. Orphanet J. Rare Dis. 13, 4 (2018). https://doi.org/10.1186/s13023-017-0757-3

    Article  PubMed  PubMed Central  Google Scholar 

  47. Calvo, P.L., Pagliardini, S., Baldi, M., Pucci, A., Sturiale, L., Garozzo, D., Vinciguerra, T., Barbera, C., Jaeken, J.: Long-standing mild hypertransaminasaemia caused by congenital disorder of glycosylation (CDG) type IIx. J. Inherit. Metab. Dis. 31, 437–440 (2008)

    Google Scholar 

  48. Deguchi, K., Keira, T., Yamada, K., Ito, H., Takegawa, Y., Nakagawa, H., Nishimura, S.I.: Two-dimensional hydrophilic interaction chromatography coupling anion-exchange and hydrophilic interaction columns for separation of 2-pyridylamino derivatives of neutral and sialylated N-glycans. J. Chromatogr. A 1189, 169–174 (2008)

    CAS  PubMed  Google Scholar 

  49. Palmisano, G., Larsen, M.R., Packer, N.H., Thaysen-Andersen, M.: Structural analysis of glycoprotein sialylation–part II: LC-MS based detection. RSC Adv. 3, 22706–22726 (2013)

    CAS  Google Scholar 

  50. Chantret, I., Dupré, T., Delenda, C., Bucher, S., Dancourt, J., Barnier, A., Charollais, A., Heron, D., Bader-Meunier, B., Danos, O., Seta, N., Durand, G., Oriol, R., Codogno, P., Moore, S.E.: Congenital disorders of glycosylation type Ig is defined by a deficiency in dolichyl-Pmannose: Man-7-GlcNAc2-PP-dolichyl mannosyltransferase. J. Biol. Chem. 277, 25815–25822 (2002)

    CAS  PubMed  Google Scholar 

  51. Thiel, C., Schwarz, M., Hasilik, M., Grieben, U., Hanefeld, F., Lehle, L., von Figura, K., Körner, C.: Deficiency of dolichyl-PMan: Man-7-GlcNAc2-PP-dolichyl mannosyltransferase causes congenital disorder of glycosylation type Ig. Biochem. J. 367, 195–201 (2002)

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Grubenmann, C.E., Frank, C.G., Kjaergaard, S., Berger, E.G., Aebi, M., Hennet, T.: ALG12 mannosyltransferase defect in congenital disorder of glycosylation type Ig. Hum. Mol. Genet. 11, 2331–2339 (2002)

    CAS  PubMed  Google Scholar 

  53. Eklund, E.A., Newell, J.W., Sun, L., Seo, N.S., Alper, G., Willert, J., Freeze, H.H.: Molecular and clinical description of the first US patients with congenital disorder of glycosylation Ig. Mol. Genet. Metab. 84, 25–31 (2005)

    CAS  PubMed  Google Scholar 

  54. Di Rocco, M., Hennet, T., Grubenmann, C.E., Pagliardini, S., Allegri, A.E., Frank, C.G., Aebi, M., Vignola, S., Jaeken, J.: Congenital disorder of glycosylation (CDG) Ig: report on a patient and review of the literature. J. Inherit. Metab. Dis. 28, 1162–1164 (2005)

    PubMed  Google Scholar 

  55. Kranz, C., Basinger, A.A., Gucsavas-Calikoglu, M., Sun, L., Powell, C.M., Henderson, F.W., Aylsworth, A.S., Freeze, H.H.: Expanding spectrum of congenital disorder of glycosylation Ig (CDG-Ig): sibs with a unique skeletal dysplasia, hypogammaglobulinemia, cardiomyopathy, genital malformations, and early lethality. Am. J. Med. Genet. 143A, 1371–1378 (2007)

    CAS  PubMed  Google Scholar 

  56. Murali, C., Lu, J.T., Jain, M., Liu, D.S., Lachman, R., Gibbs, R.A., Lee, B.H., Cohn, D., Campeau, P.M.: Diagnosis of ALG12-CDG by exome sequencing in a case of severe skeletal dysplasia. Mol Genet: Metab. Rep. 1, 213–219 (2014)

    CAS  Google Scholar 

  57. Sturiale, L., Bianca, S., Garozzo, D., Terracciano, A., Agolini, E., Messina, A., Palmigiano, A., Esposito, F., Barone, C., Novelli, A., Fiumara, A., Jaeken, J., Barone, R.: ALG12-CDG: novel glycophenotype insights endorse the molecular defect. Glycoconjugate J. 36, 461–472 (2019)

    CAS  Google Scholar 

Download references

Acknowledgements

Partial financial support from the association Vaincre le Maladies Lysosomales (VML), Massy France (Agreement N ° 2018-5C) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Garozzo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 0.97 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Messina, A., Palmigiano, A., Esposito, F. et al. HILIC-UPLC-MS for high throughput and isomeric N-glycan separation and characterization in Congenital Disorders Glycosylation and human diseases. Glycoconj J 38, 201–211 (2021). https://doi.org/10.1007/s10719-020-09947-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-020-09947-7

Keywords

Navigation