Skip to main content
Log in

Pathophysiology of neuropathic lysosomal storage disorders

  • LSDs with Neurologic Involvement
  • Published:
Journal of Inherited Metabolic Disease

Abstract

Although neurodegenerative diseases are most prevalent in the elderly, in rare cases, they can also affect children. Lysosomal storage diseases (LSDs) are a group of inherited metabolic neurodegenerative disorders due to deficiency of a specific protein integral to lysosomal function, such as enzymes or lysosomal components, or to errors in enzyme trafficking/targeting and defective function of nonenzymatic lysosomal proteins, all preventing the complete degradation and recycling of macromolecules. This primary metabolic event determines a cascade of secondary events, inducing LSD’s pathology. The accumulation of intermediate degradation affects the function of lysosomes and other cellular organelles. Accumulation begins in infancy and progressively worsens, often affecting several organs, including the central nervous system (CNS). Affected neurons may die through apoptosis or necrosis, although neuronal loss usually does not occur before advanced stages of the disease. CNS pathology causes mental retardation, progressive neurodegeneration, and premature death. Many of these features are also found in adult neurodegenerative disorders, such as Alzheimer’s, Parkinson’s, and Huntington’s diseases. However, the nature of the secondary events and their exact contribution to mental retardation and dementia remains largely unknown. Recently, lysosomal involvement in the pathogenesis of these disorders has been described. Improved knowledge of secondary events may have impact on diagnosis, staging, and follow-up of affected children. Importantly, new insights may provide indications about possible disease reversal upon treatment. A discussion about the CNS pathophysiology involvement in LSDs is the aim of this review. The lysosomal involvement in adult neurodegenerative diseases will also be briefly described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

ATP:

Adenosine-5'-triphosphate

Aβ:

β-amyloid peptide

CNS:

Central nervous system

E/L:

Endosomal/lysosomal

ER:

Endoplasmic reticulum

GSL:

Glycosphingolipid

HD:

Huntington’s disease

LSDs:

Lysosomal storage diseases

MAL:

Myelin and lymphocyte protein

ML:

Mucolipidosis

MLD:

Metachromatic leukodystrophy

MPS:

Mucopolysaccharidosis

MSD:

Multiple sulfatase deficiency

NCLs:

Neuronal ceroid lipofuscinoses

NFTs:

Neurofibrillary tangles

NPC:

Niemann-Pick type C

PD:

Parkinson’s disease

PHFs:

Paired helical filaments

SERCA:

Sarco/endoplasmic reticulum Ca2+−ATPase

TGN:

Trans-Golgi network

References

  • Ausseil J, Desmaris N, Bigou S et al (2008) Early neurodegeneration progresses independently of microglial activation by heparan sulfate in the brain of mucopolysaccharidosis IIIB mice. PLoS ONE 3(5):e2296

    Article  PubMed  CAS  Google Scholar 

  • Ayala A (2008) Insight into Parkinson’s Disease and α-Synuclein Degradation via the Lysosome: α-Synuclein Localization Changes in Vps28Δ. Eukaryon 4:107–111

    Google Scholar 

  • Bagshaw RD, Mahuran DJ, Callahan JW (2005a) Lysosomal membrane proteomics and biogenesis of lysosomes. Mol Neurobiol 32:27–41

    Article  CAS  PubMed  Google Scholar 

  • Bagshaw RD, Mahuran DJ, Callahan JW (2005b) A proteomic analysis of lysosomal integral membrane proteins reveals the diverse composition of the organelle. Mol Cell Proteomics 4(2):133–143

    CAS  PubMed  Google Scholar 

  • Bahr BA, Bendiske J (2002) The neuropathogenic contributions of lysosomal dysfunction. J Neurochem 83:481–489

    Article  CAS  PubMed  Google Scholar 

  • Bahr BA, Abai B, Gall CM, Vanderklish PW, Hoffman KB, Lynch G (1994) Induction of b-amyloid-containing polypeptides in hippocampus: Evidence for a concomitant loss of synaptic proteins and interactions with an excitotoxin. Exp Neurol 129:81–94

    Article  CAS  PubMed  Google Scholar 

  • Ballabio A, Gieselmann V (2009) Lysosomal disorders: from storage to cellular damage. Biochim Biophys Acta 1793:684–696

    Article  CAS  PubMed  Google Scholar 

  • Barak V, Acker M, Nisman B et al (1999) Cytokines in Gaucher’s disease. Eur Cytokine Netw 10:205–210

    CAS  PubMed  Google Scholar 

  • Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517–529

    Article  CAS  PubMed  Google Scholar 

  • Boot RG, Verhoek M, de Fost M et al (2004) Marked elevation of the chemokine CCL18/PARC in Gaucher disease: a novel surrogate marker for assessing therapeutic intervention. Blood 103:33–39

    Article  CAS  PubMed  Google Scholar 

  • Boya P, Gonzalez-Polo RA, Casares N et al (2005) Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol 25:1025–1040

    Article  CAS  PubMed  Google Scholar 

  • Breckenridge DG, Germain M, Mathai JP, Nguyen M, Shore GC (2003) Regulation of apoptosis by endoplasmic reticulum pathways. Oncogene 22:8608–8618

    Article  CAS  PubMed  Google Scholar 

  • Brown DA, London E (1998) Functions of lipid rafts in biological membranes. A Rev Cell Dev Biol 14:111–136

    Article  CAS  Google Scholar 

  • Brown DA, London E (2000) Structure and function of sphingolipid—and cholesterol-rich membrane rafts. J Biol Chem 275:17221–17224

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Espinola JA, Fossale E et al (2006) Autophagy is disrupted in a knock-in mouse model of juvenile neuronal ceroid lipofuscinosis. J Biol Chem 281:20483–20493

    Article  CAS  PubMed  Google Scholar 

  • Cataldo AM, Paskevich PA, Kominami E, Nixon RA (1991) Lysosomal hydrolases of different classes are abnormally distributed in brains of patients with Alzheimer disease. Proc Natl Acad Sci USA 88:10998–11002

    Article  CAS  PubMed  Google Scholar 

  • Cataldo AM, Barnett JL, Berman SA et al (1995) Gene expression and cellular content of cathepsin D in Alzheimer’s disease brain: evidence for early up-regulation of the endosomal-lysosomal system. Neuron 14:671–680

    Article  CAS  PubMed  Google Scholar 

  • Cataldo AM, Barnett JL, Mann DM, Nixon RA (1996) Colocalization of lysosomal hydrolase and beta-amyloid in diffuse plaques of the cerebellum and striatum in Alzheimer’s disease and Down’s syndrome. J Neuropathol Exp Neurol 55:704–715

    Article  CAS  PubMed  Google Scholar 

  • Cataldo AM, Barnett JL, Pieroni C, Nixon RA (1997) Increased neuronal endocytosis and protease delivery to early endosomes in sporadic Alzheimer’s disease: neuropathologic evidence for a mechanism of increased beta-amyloidogenesis. J Neurosci 17:6142–6151

    CAS  PubMed  Google Scholar 

  • Cataldo AM, Peterhoff CM, Schmidt SD, Terio NB, Duff K, Beard M (2004) Presenilin mutations in familial Alzheimer disease and transgenic mice models accelerate neuronal lysosomal pathology. J Neuropathol Exp Neurol 63:821–830

    CAS  PubMed  Google Scholar 

  • Chu Y, Dodiya H, Aebischer P, Olanow CW, Kordower JH (2009) Alterations in lysosomal and proteasomal markers in Parkinson's disease: Relationship to alpha-synuclein inclusions. Neurobiol Dis 35:385–398

    Article  CAS  PubMed  Google Scholar 

  • Coleman M (2005) Axon degeneration mechanisms: commonality amid diversity. Nat Rev Neurosci 6:889–898

    Article  CAS  PubMed  Google Scholar 

  • Cooper JD, Russell C, Mitchison HM (2006) Progress towards understanding disease mechanisms in small vertebrate models of neuronal ceroid lipofuscinosis. Biochim Biophys Acta 1762:873–889

    CAS  PubMed  Google Scholar 

  • Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D (2004) Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science 305:1292–1295

    Article  CAS  PubMed  Google Scholar 

  • D’Azzo A, Tessitore A, Sano R (2006) Gangliosides as apoptotic signals in ER stress response. Cell Death Differ 13:404–413

    Article  PubMed  CAS  Google Scholar 

  • Dermine JF, Duclos S, Garin J et al (2001) Flotillin-1-enriched lipid raft domains accumulate on maturing phagosomes. J Biol Chem 276:18507–18512

    Article  CAS  PubMed  Google Scholar 

  • Desnick RJ, Thorpe SR, Fiddler M (1976) Toward enzyme therapy for lysosomal storage diseases. Physiol Rev 56:57–99

    CAS  PubMed  Google Scholar 

  • Di Fonzo A, Chien HF, Socal M et al (2007) ATP13A2 missense mutations in juvenile parkinsonism and young onset Parkinson disease. Neurology 68:1557–1562

    Article  PubMed  CAS  Google Scholar 

  • Dierks T, Schlotawa L, Frese MA, Radhakrishnan K, Figura K, Schmidt B (2009) Molecular basis of multiple sulfatase deficiency, mucolipidosis II/III and Niemann-Pick C1 disease—Lysosomal storage disorders caused by defects of non-lysosomal proteins. Biochim Biophys Acta 1793:710–725

    Article  CAS  PubMed  Google Scholar 

  • Duyckaerts C, Dickson DW (2003) Neuropathology of Alzheimer’s disease. In: Dickson D (ed) Neurodegeneration: the molecular pathology of dementia and movement disorders. ISN Neuropath Press, Basel, pp 47–65

    Google Scholar 

  • Dyer RB, McMurray CT (2001) Mutant protein in Huntington disease is resistant to proteolysis in affected brain. Nat Genet 29:270–278

    Article  CAS  PubMed  Google Scholar 

  • Eskelinen EL, Saftig P (2009) Autophagy: a lysosomal degradation pathway with a central role in health and disease. Biochim Biophys Acta 1793:664–673

    Article  CAS  PubMed  Google Scholar 

  • Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM (1998) Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-β, PGE2, and PAF. J Clin Invest 101:890–898

    Article  CAS  PubMed  Google Scholar 

  • Farfel-Becker T, Vitner E, Dekel H, Leshem N, Enquist IB, Karlsson S, Futerman AH (2009) No evidence for activation of the unfolded protein response in neuronopathic models of Gaucher disease. Hum Mol Genet 18:1482–1488

    Article  CAS  PubMed  Google Scholar 

  • Feinstein SC, Wilson L (2005) Inability of tau to properly regulate neuronal microtubule dynamics: a loss-of-function mechanism by which tau might mediate neuronal cell death. Biochim Biophys Acta 1739:268–279

    CAS  PubMed  Google Scholar 

  • Feng B, Yao PM, Li Y et al (2003) The endoplasmic reticulum is the site of cholesterol-induced cytotoxicity in macrophages. Nat Cell Biol 5:781–792

    Article  CAS  PubMed  Google Scholar 

  • Fill M, Copello JA (2002) Ryanodine receptor calcium release channels. Physiol Rev 82:893–922

    CAS  PubMed  Google Scholar 

  • Fortun J, Dunn WA Jr, Joy S, Li J, Notterpek L (2003) Emerging role for autophagy in the removal of aggresomes in Schwann cells. J Neurosci 23:10672–10680

    CAS  PubMed  Google Scholar 

  • Futerman AH, van Meer G (2004) The cell biology of lysosomal storage disorders. Nat Rev Mol Cell Biol 5:554–565

    Article  CAS  PubMed  Google Scholar 

  • German DC, Liang CL, Song T, Yazdani U, Xie C, Dietschy JM (2002) Neurodegeneration in the Niemann-Pick C mouse: glial involvement. Neuroscience 109:437–450

    Article  CAS  PubMed  Google Scholar 

  • Gieselmann V, Franken S, Klein D et al (2003) Metachromatic leukodystrophy: consequences of sulphatide accumulation. Acta Paediatr Suppl 92:74–79

    Article  CAS  PubMed  Google Scholar 

  • Ginzburg L, Futerman AH (2005) Defective calcium homeostasis in the cerebellum in a mouse model of Niemann-Pick A disease. J Neurochem 95:1619–1628

    Article  CAS  PubMed  Google Scholar 

  • Ginzburg L, Kacher Y, Futerman AH (2004) The pathogenesis of glycosphingolipid storage disorders. Semin Cell Dev Biol 15(4):417–431

    Article  CAS  PubMed  Google Scholar 

  • Ginzburg L, Li SC, Li YT, Futerman AH (2008) An exposed carboxyl group on sialic acid is essential for gangliosides to inhibit calcium uptake via the sarco/endoplasmic reticulum Ca2+−ATPase: relevance to gangliosidoses. J Neurochem 104:140–146

    CAS  PubMed  Google Scholar 

  • Goebel HH, Schochet SS, Jaynes M, Bruck W, Kohlschutter A, Hentati F (1999) Progress in neuropathology of the neuronal ceroid lipofuscinoses. Mol Genet Metab 66:367–372

    Article  CAS  PubMed  Google Scholar 

  • Gruenberg J (2001) The endocytic pathway: a mosaic of domains. Nat Rev Mol Cell Biol 2:721–730

    Article  CAS  PubMed  Google Scholar 

  • Hamano T, Gendron TF, Causevic et al (2008) Autophagic-lysosomal perturbation enhances tau aggregation in transfectants with induced wild-type tau expression. Eur J Neurosci 27:1119–1130

  • Hayashi M (2009) Oxidative stress in developmental brain disorders. Neuropathology 29:1–8

    Article  PubMed  Google Scholar 

  • Hara T, Nakamura K, Matsui M et al (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:885–889

    Article  CAS  PubMed  Google Scholar 

  • Hers HG (1965) Progress in gastroenterology: Inborn lysosomal diseases. Gastroenterology 48:625–633

    CAS  PubMed  Google Scholar 

  • Hers HG, Van Hoof F (1973) Lysosomes and storage diseases. Academic Press, New York

    Google Scholar 

  • Hollak CE, Evers L, Aerts JM, van Oers MH (1997) Elevated levels of M-CSF, sCD14 and IL8 in type 1 Gaucher disease. Blood Cells Mol Dis 23:201–212

    Article  CAS  PubMed  Google Scholar 

  • Jaeger PA, Wyss-Coray T (2009) All-you-can-eat: autophagy in neurodegeneration and neuroprotection. Mol Neurodegener 4:16

    Article  PubMed  CAS  Google Scholar 

  • Jennings JJ, Zhu JH Jr, Rbaibi Y, Luo X, Chu CT, Kiselyov K (2006) Mitochondrial aberrations in mucolipidosis Type IV. J Biol Chem 281:39041–39050

    Article  CAS  PubMed  Google Scholar 

  • Jeyakumar M, Dwek RA, Butters TD, Platt FM (2005) Storage solutions: treating lysosomal disorders of the brain. Nat Rev Neurosci 6:713–725

    PubMed  Google Scholar 

  • Jeyakumar M, Williamsa I, Smitha DA, Coxb TM, Platt FM (2009) Critical role of iron in the pathogenesis of the murine gangliosidoses. Neurobiol dis 34:406–416

    Article  CAS  PubMed  Google Scholar 

  • Johnson GV (2006) Tau phosphorylation and proteolysis: insights and perspectives. J Alzheimer’s Dis 9:243–250

    CAS  Google Scholar 

  • Jolly RD, Brown S, Das AM, Walkley SU (2002) Mitochondrial dysfunction in the neuronal ceroidlipofuscinoses (Batten disease). Neurochem Int 40:565–571

    Article  CAS  PubMed  Google Scholar 

  • Journet A, Chapel A, Kieffer S, Roux F, Garin J (2002) Proteomic analysis of human lysosomes: application to monocytic and breast cancer cells. Proteomics 2:1026–1040

    Article  CAS  PubMed  Google Scholar 

  • Kacher Y, Futerman AH (2006) Genetic diseases of sphingolipid metabolism: Pathological mechanisms and therapeutic options. FEBS Lett 580:5510–5517

    Article  CAS  PubMed  Google Scholar 

  • Kasahara K, Sanai Y (2000) Functional roles of glycosphingolipids in signal transduction via lipid rafts. Glycoconj J 17:153–162

    Article  CAS  PubMed  Google Scholar 

  • Kay GW, Palmer DN, Rezaie P, Cooper JD (2006) Activation of non-neuronal cells within the prenatal developing brain of sheep with neuronal ceroid lipofuscinosis. Brain Pathol 16:110–116

    Article  PubMed  Google Scholar 

  • Kawashita E, Tsuji D, Kawashima N, Nakayama K, Matsuno H, Itoh K (2009) Abnormal production of macrophage inflammatory protein-1alpha by microglial cell lines derived from neonatal brains of Sandhoff disease model mice. J Neurochem 109:1215–1224

    Article  CAS  PubMed  Google Scholar 

  • Kegel KB, Kim M, Sapp E et al (2000) Huntingtin expression stimulates endosomal-lysosomal activity, endosome tubulation, and autophagy. J Neurosci 20:7268–7278

    CAS  PubMed  Google Scholar 

  • Kielar C, Maddox L, Bible E et al (2007) Successive neuron loss in the thalamus and cortex in a mouse model of infantile neuronal ceroid lipofuscinosis. Neurobiol Dis 25:150–162

    Article  CAS  PubMed  Google Scholar 

  • Kiselyov K, Muallem S (2008) Mitochondrial Ca2+ homeostasis in lysosomal storage diseases. Cell Calcium 44:103–111

    Article  CAS  PubMed  Google Scholar 

  • Kiselyov K, Jennigs JJ Jr, Rbaibi Y, Chu CT (2007) Autophagy, Mitochondria and Cell Death in Lysosomal Storage Diseases. Autophagy 3:259–262

    CAS  PubMed  Google Scholar 

  • Klionsky DJ (2005) The molecular machinery of autophagy: unanswered questions. J Cell Sci 118:7–18

    Article  CAS  PubMed  Google Scholar 

  • Koike M, Shibata M, Waguri S et al (2005) Participation of autophagy in storage of lysosomes in neurons from mouse models of neuronal ceroid-lipofuscinoses (Batten disease). Am J Pathol 167:1713–1728

    CAS  PubMed  Google Scholar 

  • Komatsu M, Waguri S, Chiba T et al (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441:880–884

    Article  CAS  PubMed  Google Scholar 

  • Kornfeld S, Sly WS (2001) I-cell disease and pseudo-Hurler polydystrophy: disorders of lysosomal enzyme phosphorylation and localization. In Scriver CR, Beaudet AL, Sly WS, Valle D (eds.) Childs B

  • Korkotian E, Schwarz A, Pelled D, Schwarzmann G, Segal M, Futerman AH (1999) Elevation of intracellular glucosylceramide levels results in an increase in endoplasmic reticulum density and in functional calcium stores in cultured neurons. J Biol Chem 274:21673–21678

    Article  CAS  PubMed  Google Scholar 

  • Larsen KE, Sulzer D (2002) Autophagy in neurons: a review. Histol Histopathol 17:897–908

    CAS  PubMed  Google Scholar 

  • Ledeen RW, Yu RK (1982) Gangliosides: structure, isolation and analysis. Methods Enzymol 83:139–191

    Article  CAS  PubMed  Google Scholar 

  • Lee JA, Gao FB (2009) Inhibition of autophagy induction delays neuronal cell loss caused by dysfunctional ESCRT-III in frontotemporal dementia. J Neurosci 29:8506–8511

    Article  CAS  PubMed  Google Scholar 

  • Lee HJ, Khoshaghideh F, Patel S, Lee SJ (2004) Clearance of alpha-synuclein oligomeric intermediates via the lysosomal degradation pathway. J Neurosci 24:1888–1896

    Article  CAS  PubMed  Google Scholar 

  • Lee DW, Andersen JK, Kaur D (2006) Iron Dysregulation and Neurodegeneration: The Molecular Connection. Mol Interv 6:89–97

    Article  CAS  PubMed  Google Scholar 

  • Li HH, Zhao HZ, Neufeld EF, Cai Y, Gomez-Pinilla F (2002) Attenuated plasticity in neurons and astrocytes in the mouse model of Sanfilippo syndrome type B. J Neurosci Res 69:30–38

    Article  CAS  PubMed  Google Scholar 

  • Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795

    Article  CAS  PubMed  Google Scholar 

  • Lin F, Wu J, Wang Y, Qin Z (2007) Huntingtin cleavage induced by thrombin in vitro. Acta Biochim Biophys Sin (Shanghai) 39(1):15–18

    CAS  Google Scholar 

  • Ling EA, Wong WC (1993) The origin and nature of ramified and amoeboid microglia: a historical review and current concepts. Glia 7:9–18

    Article  CAS  PubMed  Google Scholar 

  • Lloyd-Evans E, Pelled D, Riebeling C et al (2003) Glucosylceramide and glucosylsphingosine modulate calcium mobilization from brain microsomes via different mechanisms. J Biol Chem 278:23594–23599

    Article  CAS  PubMed  Google Scholar 

  • Lloyd-Evans E, Morgan AJ, He X et al (2008) Niemann-Pick disease type C1 is a sphingosine storage disease that causes deregulation of lysosomal calcium. Nat Med 14:1247–1255

    Article  CAS  PubMed  Google Scholar 

  • Lübke T, Lobel P, Sleat DE (2009) Proteomics of the lysosome. Biochim Biophys Acta 1793:625–635

    Article  PubMed  CAS  Google Scholar 

  • Lucke T, Hoppner W, Schmidt E, Illsinger S, Das AM (2004) Fabry disease: reduced activities of respiratory chain enzymes with decreased levels of energy-rich phosphates in fibroblasts. Mol Genet Metab 82:93–97

    Article  CAS  PubMed  Google Scholar 

  • Malkus KA, Tsika E, Ischiropoulos H (2009) Oxidative modifications, mitochondrial dysfunction, and impaired protein degradation in Parkinson's disease: how neurons are lost in the Bermuda triangle. Mol Neurodegener 4:24

    Article  PubMed  CAS  Google Scholar 

  • Mancuso C, Scapagini G, Curro D, Giuffrida Stella AM, De Marco C, Butterfield DA, Calabrese V (2007) Mitochondrial dysfunction, free radical generation and cellular stress response in neurodegenerative disorders. Front Biosci 12:1107–1123

    Article  CAS  PubMed  Google Scholar 

  • March PA, Thrall MA, Wurzelmann S, Brown D, Walkley SU (1997) Dendritic and axonal abnormalities in feline Niemann-Pick disease type C. Acta Neuropathol 94:164–172

    Article  CAS  PubMed  Google Scholar 

  • Mattson MP (2007) Calcium and neurodegeneration. Aging Cell 6(3):337–350

    Article  CAS  PubMed  Google Scholar 

  • Meijer AJ, Codogno P (2009) Autophagy: regulation and role in disease. Crit Rev Clin Lab Sci 46:210–240

    Article  CAS  PubMed  Google Scholar 

  • Meikle PJ, Hopwood JJ, Clague AE, Carey WF (1999) Prevalence of lysosomal storage disorders. Jama 281:249–254

    Article  CAS  PubMed  Google Scholar 

  • Meredith GE, Totterdell S, Petroske E, Santa Cruz K, Callison RC, Lau YS (2002) Lysosomal malfunction accompanies alpha-synuclein aggregation in a progressive mouse model of Parkinson’s disease. Brain Res 956:156–165

    Article  CAS  PubMed  Google Scholar 

  • Mielke JG, Murphy MP, Maritz J, Bengualid KM, Ivy GO (1997) Chloroquine administration in mice increases b-amyloid immunoreactivity and attenuates kainate-induced blood-brain barrier dysfunction. Neurosci Lett 227:169–172

    Article  CAS  PubMed  Google Scholar 

  • Misquitta CM, Mack DP, Grover AK (1999) Sarco/endoplasmic reticulum Ca2+ (SERCA)-pumps: link to heart beats and calcium waves. Cell Calcium 25:277–290

    Article  CAS  PubMed  Google Scholar 

  • Mitchison HM, Lim MJ, Cooper JD (2004) Selectivity and types of cell death in the neuronal ceroid lipofuscinoses. Brain Pathol 14:86–96

    CAS  PubMed  Google Scholar 

  • Mole SE, Williams RE, Goebel HH (2005) Correlations between genotype, ultrastructural morphology and clinical phenotype in the neuronal ceroid lipofuscinoses. Neurogenetics 6:107–126

    Article  PubMed  Google Scholar 

  • Moos T, Morgan EH (2004) The metabolism of neuronal iron and its pathogenic role in neurological disease: Review. Ann NY Acad Sci 1012:14–26

    Article  CAS  PubMed  Google Scholar 

  • Nadadur SS, Srirama K, Mudipalli A (2008) Iron transport & homeostasis mechanisms: their role in health & disease. Indian J Med Res 128:533–544

    CAS  PubMed  Google Scholar 

  • Nguyen HN, Wang C, Perry DC (2002) Depletion of intracellular calcium stores is toxic to SH-SY5Y neuronal cells. Brain Res 924:159–166

    Article  CAS  PubMed  Google Scholar 

  • Nixon RA, Mathews PM, Cataldo AM (2001) The neuronal endosomal-lysosomal system in Alzheimer’s disease. J Alzheimer’s Dis 3:97–107

    CAS  Google Scholar 

  • Ohmi K, Greenberg DS, Rajavel KS, Ryazantsev S, Li HH, Neufeld EF (2003) Activated microglia in cortex of mouse models of mucopolysaccharidoses I and IIIB. Proc Natl Acad Sci USA 100:1902–1907

    Article  CAS  PubMed  Google Scholar 

  • Ohmi K, Kudo LC, Ryazantsev S, Zhao HZ, Karstenb SL, Neufelda EF (2009) Sanfilippo syndrome type B, a lysosomal storage disease, is also a tauopathy. Proc Natl Acad Sci USA 106:8332–8337

    Article  CAS  PubMed  Google Scholar 

  • Overly CC, Hollenbeck PJ (1996) Dynamic organization of endocytic pathways in axons of cultured sympathetic neurons. J Neurosci 16:6056–6064

    CAS  PubMed  Google Scholar 

  • Pagano RE (2003) Endocytic trafficking of glycosphingolipids in sphingolipid storage diseases. Philos Trans R Soc Lond B Biol Sci 358:885–891

    Article  CAS  PubMed  Google Scholar 

  • Pagano RE, Puri V, Dominguez M, Marks DL (2000) Membrane traffic in sphingolipid storage diseases. Traffic 1:807–815

    Article  CAS  PubMed  Google Scholar 

  • Pan T, Kondo S, Le W, Jankovic J (2008) The role of autophagy-lysosome pathway in neurodegeneration associated with Parkinson’s disease. Brain 131:1969–1978

    Article  PubMed  Google Scholar 

  • Papanikolaou G, Pantopoulos K (2005) Iron metabolism and toxicity. Toxicol Appl Pharmacol 202:199–211

    Article  CAS  PubMed  Google Scholar 

  • Pelled D, Lloyd-Evans E, Riebeling C, Jeyakumar M, Platt FM, Futerman AH (2003) Inhibition of calcium uptake via the sarco/endoplasmic reticulum Ca2+-ATPase in a mouse model of Sandhoff disease and prevention by treatment with Nbutyldeoxynojirimycin. J Biol Chem 278:29496–29501

    Article  CAS  PubMed  Google Scholar 

  • Pelled D, Trajkovic-Bodennec S, Lloyd-Evans E, Sidransky E, Schiffmann R, Futerman AH (2005) Enhanced calcium release in the acute neuronopathic form of Gaucher disease. Neurobiol Dis 18:83–88

    Article  CAS  PubMed  Google Scholar 

  • Platt FM, Walkley SU (2004) Lysosomal defects and storage. In: Platt FM, Walkley SU (eds) Lysosomal Disorders of the Brain: Recent Advances in Molecular and Cellular Pathogenesis and Treatment, 1st edn. Oxford University Press, New York, pp 32–49

    Chapter  Google Scholar 

  • Platt FM, Lachmann RH (2009) Treating lysosomal storage disorders: Current practice and future prospects. Biochim Biophys Acta 1793:737–745

    Article  CAS  PubMed  Google Scholar 

  • Pontikis CC, Cella CV, Parihar N et al (2004) Late onset neurodegeneration in the Cln3-/−mouse model of juvenile neuronal ceroid lipofuscinosis is preceded by low level glial activation. Brain Res 1023:231–242

    Article  CAS  PubMed  Google Scholar 

  • Proia R, Wu YP (2004) Blood to brain to the rescue. J Clinl Invest 113:1108–1110

    CAS  Google Scholar 

  • Qin ZH, Wang YM, Kegel KB et al (2003) Autophagy regulates the processing of amino terminal huntingtin fragments. Hum Mol Genet 12:3231–3244

    Article  CAS  PubMed  Google Scholar 

  • Qin ZH, Wang YM, Sapp E et al (2004) b) Huntingtin bodies sequester vesicle-associated proteins by a polyproline-dependent interaction. J Neurosci 24:269–281

    Article  CAS  PubMed  Google Scholar 

  • Raben RN, Shea L, Hill V, Plotz P (2009) Monitoring autophagy in lysosomal storage disorders. Methods Enzymol 453:417–449

    Article  CAS  PubMed  Google Scholar 

  • Ravikumar B, Duden R, Rubinsztein DC (2002) Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum Mol Genet 11:1107–1117

    Article  CAS  PubMed  Google Scholar 

  • Roisen FJ, Bartfeld H, Nagele R, Yorke G (1981) Ganglioside stimulation of axonal sprouting in vitro. Science 214:577–578

    Article  CAS  PubMed  Google Scholar 

  • Rubinsztein DC (2006) The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443:780–786

    Article  CAS  PubMed  Google Scholar 

  • Rubinsztein DC, Gestwicki JE, Murphy LO, Klionsky DJ (2007) Potential therapeutic applications of autophagy. Nat Rev Drug Discov 6(4):304–312

    Article  CAS  PubMed  Google Scholar 

  • Santavuori P, Haltia M, Rapola J, Raitta C (1973) Infantile type of so-called neuronal ceroid-lipofuscinosis. 1. A clinical study of 15 patients. J Neurol Sci 18:257–267

    Article  CAS  PubMed  Google Scholar 

  • Sardiello M, Palmieri M, di Ronza A et al (2009) A Gene Network Regulating Lysosomal Biogenesis and Function. Science 325:473–477

    CAS  PubMed  Google Scholar 

  • Schapira AH (2009) Etiology and pathogenesis of Parkinson disease. Neurol Clin 27:583–603

    Article  PubMed  Google Scholar 

  • Settembre C, Annunziata I, Spampanato C et al (2007) Systemic inflammation and neurodegeneration in a mouse model of multiple sulfatase deficiency. Pro Natl Acad Sci USA 104:4506–4511

    Article  CAS  Google Scholar 

  • Settembre C, Fraldi A, Jahreiss L et al (2008) A Block of Autophagy in Lysosomal Storage Disorders. Hum Mol Genet 17:119–129

    Article  CAS  PubMed  Google Scholar 

  • Shacka JJ, Roth KA (2005) Regulation of neuronal cell death and neurodegeneration by members of the Bcl-2 family: therapeutic implications. Curr Drug Targets CNS Neurol Disord 4(1):25–39. Review

    Article  CAS  PubMed  Google Scholar 

  • Sharma DK, Choudhury A, Singh RD, Wheatley CL, Marks DL, Pagano RE (2003) Glycosphingolipids internalized via caveolar-related endocytosis rapidly merge with the clathrin pathway in early endosomes and form microdomains for recycling. J Biol Chem 278:7564–7572

    Article  CAS  PubMed  Google Scholar 

  • Shimura H, Schwartz D, Gygi SP, Kosik KS (2004) CHIP-Hsc70 complex ubiquitinates phosphorylated tau and enhances cell survival. J Biol Chem 279:4869–4876

    Article  CAS  PubMed  Google Scholar 

  • Shintani T, Klionsky DJ (2004) Autophagy in health and disease: a double-edged sword. Science 5698:990–995

    Article  CAS  Google Scholar 

  • Silva LC, Futerman AH, Prieto M (2009) Lipid raft composition modulates sphingomyelinase activity and ceramide-induced membrane physical alterations. Biophys J 96:3210–3222

    Article  CAS  PubMed  Google Scholar 

  • Sipe JC, Lee P, Beutler E (2002) Brain iron metabolism and neurodegenerative disorders. Dev Neurosci 24:188–196

    Article  CAS  PubMed  Google Scholar 

  • Smith D, Wallom KL, Williams IM, Jeyakumar M, Platt FM (2009) Beneficial effects of anti-inflammatory therapy in a mouse model of Niemann-Pick disease type C1. Neurobiol Dis 36:242–251

    Article  CAS  PubMed  Google Scholar 

  • Streit WJ, Graeber MB, Kreutzberg GW (1988) Functional plasticity of microglia: a review. Glia 1:301–307

    Article  CAS  PubMed  Google Scholar 

  • Takahashi RH, Capetillo-Zarate E, Lin MT, Milner TA, Gouras GK (2008) Co-occurrence of Alzheimer’s disease beta-amyloid and tau pathologies at synapses. Neurobiol Aging [Epub ahead of print]

  • Tardy C, Andrieu-Abadie N, Salvayre R, Levade T (2004) Lysosomal storage diseases: is impaired apoptosis a pathogenic mechanism? Neurochem Res 29:871–880

    Article  CAS  PubMed  Google Scholar 

  • Terman A, Gustafsson B, Brunk UT (2006) The lysosomal-mitochondrial axis theory of postmitotic aging and cell death. Chem Biol Interact 163:29–37

    Article  CAS  PubMed  Google Scholar 

  • Tessitore A, Pirozzi M, Auricchio A (2009) Abnormal autophagy, ubiquitination, inflammation and apoptosis are dependent upon lysosomal storage and are useful biomarkers of mucopolysaccharidosis VI. Pathogenetics 2:4

    Article  PubMed  CAS  Google Scholar 

  • Tooze SA, Schiavo G (2008) Liaisons dangereuses: autophagy, neuronal survival and neurodegeneration. Curr Opin Neurobiol 18:504–515

    Article  CAS  PubMed  Google Scholar 

  • Uchiyama Y, Koike M, Shibata M, Sasaki M (2009) Autophagic neuron death. Methods Enzymol 453:33–51

    Article  CAS  PubMed  Google Scholar 

  • Vellodi A (2004) Lysosomal storage disorders. Br J Haematol 128:413–431

    Article  CAS  Google Scholar 

  • Villani GR, Gargiulo N, Faraonio R et al (2007) Cytokines, neurotrophins, and oxidative stress in brain disease from mucopolysaccharidosis IIIB. J Neurosci Res 85:612–622

    Article  CAS  PubMed  Google Scholar 

  • Villani GR, Di Domenico C, Musella A, Cecere F, Di Napoli D, Di Natale P (2009) Mucopolysaccharidosis IIIB: oxidative damage and cytotoxic cell involvement in the neuronal pathogenesis. Brain Res 1279:99–108

    Article  CAS  PubMed  Google Scholar 

  • Visigalli I, Moresco RM, Belloli S et al (2009) Monitoring disease evolution and treatment response in lysosomal disorders by the peripheral benzodiazepine receptor ligand PK11195. Neurobiol Dis 34:51–62

    Article  CAS  PubMed  Google Scholar 

  • Wada R, Tifft CJ, Proia RL (2000) Microglial activation precedes acute neurodegeneration in Sandhoff disease and is suppressed by bone marrow transplantation. Proc Natl Acad Sci USA 97:10954–10959

    Article  CAS  PubMed  Google Scholar 

  • Walkley SU (1998) Cellular Pathology of Lysosomal Storage Disorders. Brain Pathol 8:175–193

    Article  CAS  PubMed  Google Scholar 

  • Walkley SU (2004a) Secondary accumulation of gangliosides in lysosomal storage disorders. Semin Cell Dev Biol 15:433–444

    Article  CAS  PubMed  Google Scholar 

  • Walkley SU (2004 b) Pathogenic cascades and brain dysfunction. In: Platt FM, Walkley SU (eds.) Lysosomal disorders of the brain. Oxford University Press, pp. 32–49

  • Walkley SU (2007) Pathogenic mechanisms in lysosomal disease: a reappraisal of the role of the lysosomes. Acta Paediatr 96:26–32

    Article  Google Scholar 

  • Walkley SU (2009) Pathogenic cascades in lysosomal disease—Why so complex? J Inherit Metab Dis 32:181–189

    Article  CAS  PubMed  Google Scholar 

  • Walkley SU, March PA (1993) Biology of Neuronal Dysfunction in Storage Disorders. J Inherit Metab Dis 16:284–287

    Article  CAS  PubMed  Google Scholar 

  • Walkley SU, Suzuki K (2004) Consequences of NPC1 and NPC2 loss of function in mammalian neurons. Biochim Biophys Acta 1685:48–62

    CAS  PubMed  Google Scholar 

  • Walkley SU, Vanier MT (2009) Secondary lipid accumulation in lysosomal disease. Biochim Biophys Acta 1793:726–736

    Article  CAS  PubMed  Google Scholar 

  • Walkley SU, Baker HJ, Rattazzi MC, Haskins ME, Wu J-Y (1991) Neuroaxonal dystrophy in neuronal storage disorders: Evidence for major GABAergic neuron involvement. J Neurol Sci 104:1–8

    Article  CAS  PubMed  Google Scholar 

  • Walkley SU, Thrall MA, Haskins ME et al (2005) Abnormal neuronal metabolism and storage in mucopolysaccharidosis type VI (Maroteaux-Lamy) disease. Neuropathol Appl Neurobiol 31:536–544

    Article  CAS  PubMed  Google Scholar 

  • Wellingtona CL, Ellerbyb LM, Leavittc BR, Royd S, Nicholsond DW, Haydenc MR (2003) Huntingtin proteolysis in Huntington disease. Clin Neurosci Res 3:129–139

    Article  CAS  Google Scholar 

  • Wei H, Kim SJ, Zhang Z, Tsai PC, Wisniewski KE, Mukherjee AB (2008) ER and oxidative stresses are common mediators of apoptosis in both neurodegenerative and non-neurodegenerative lysosomal storage disorders and are alleviated by chemical chaperones. Hum Mol Genet 17:469–477

    Article  CAS  PubMed  Google Scholar 

  • Winslow AR, Rubinsztein DC (2008) Autophagy in neurodegeneration and development. Biochim Biophys Acta 1782:723–729

    CAS  PubMed  Google Scholar 

  • Woloszynek JC, Coleman T, Semenkovich CF, Sands (2007) MSJ Biol Chem 282:35765–35771

    Google Scholar 

  • Woloszynek JC, Kovacs A, Ohlemiller KK, Roberts M, Sands (2009) Metabolic adaptations to interrupted glycosaminoglycan recycling. MSJ Biol Chem 284:29684–29691

  • Wong ES, Tan JM, Soong WE et al (2008) Autophagy-mediated clearance of aggresomes is not a universal phenomenon. Hum Mol Genet 17:2570–2582

    Article  CAS  PubMed  Google Scholar 

  • Wraith JE (2004) Clinical aspects and diagnosis. In: Platt FM, Walkley SU (eds) Lysosomal Disorders of the Brain. Oxford University Press, Oxford, pp 50–77

    Chapter  Google Scholar 

  • Wu YP, Proia RL (2004) Deletion of macrophage-inflammatory protein 1 alpha retards neurodegeneration in Sandhoff disease mice. Proc Natl Acad Sci USA 101:8425–8430

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Lin F, Qin Z (2007) Sequestration of glyceraldehyde-3-phosphate dehydrogenase to aggregates formed by mutant huntingtin. Acta Biochim Biophys Sin (Shanghai) 39(11):885–890

    Article  CAS  Google Scholar 

  • Xu GG, Deng YQ, Liu SJ, Li HL, Wang JZ (2005) Prolonged Alzheimer-like Tau hyperphosphorylation induced by simultaneous inhibition of phosphoinositol-3 kinase and protein kinase C in N2a cells. Acta Biochim Biophys Sin (Shanghai) 37(5):349–354

    Article  CAS  Google Scholar 

  • Zhang L, Sheng R, Qin Z (2009) The lysosome and neurodegenerative diseases. Acta Biochim Biophys Sin (Shanghai) 41:437–445

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Authors thank Prof. Ed Wraith, Manchester Children’s Hospital, Manchester, UK, for critical reading of the manuscript. Maurizio Scarpa and David Begley, Kings College London, London UK, have recently co-founded the Pan-European Consortium, Brains For Brain, designed to foster and improve research on, and treatment of, lysosomal storage disorders throughout Europe. (www.brains4brain.eu).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Scarpa.

Additional information

Communicated by: Gregory Pastores

Competing interest: None declared.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bellettato, C.M., Scarpa, M. Pathophysiology of neuropathic lysosomal storage disorders. J Inherit Metab Dis 33, 347–362 (2010). https://doi.org/10.1007/s10545-010-9075-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-010-9075-9

Keywords

Navigation