Skip to main content
Log in

Biochemistry and bioenergetics of glutaryl-CoA dehydrogenase deficiency

  • Metabolic Dissertation
  • Published:
Journal of Inherited Metabolic Disease

Summary

Glutaryl-CoA dehydrogenase (GCDH) is a central enzyme in the catabolic pathway of l-tryptophan, l-lysine, and l-hydroxylysine which catalyses the oxidative decarboxylation of glutaryl-CoA to crotonyl-CoA and CO2. Glutaryl-CoA dehydrogenase deficiency (GDD) is an autosomal recessive disease characterized by the accumulation of glutaric and 3-hydroxyglutaric acids in tissues and body fluids. Untreated patients commonly present with severe striatal degeneration during encephalopathic crises. Previous studies have highlighted primary excitotoxicity as a trigger of striatal degeneration. The aim of this PhD study was to investigate in detail tissue-specific bioenergetic and biochemical parameters of GDD in vitro, post mortem, and in Gcdh -/- mice. The major bioenergetic finding was uncompetitive inhibition of α-ketoglutarate dehydrogenase complex by glutaryl-CoA. It is suggested that a synergism of primary and secondary excitotoxic effects in concert with age-related physiological changes in the developing brain underlie acute and chronic neurodegenerative changes in GDD patients. The major biochemical findings were highly elevated cerebral concentrations of glutaric and 3-hydroxyglutaric acid despite low permeability of the blood–brain barrier for these dicarboxylic acids. It can be postulated that glutaric and 3-hydroxyglutaric acids are synthesized de novo and subsequently trapped in the brain. In this light, neurological disease in GDD is not ‘transported’ to the brain in analogy with phenylketonuria or hepatic encephalopathy as suggested previously but is more likely to be induced by the intrinsic biochemical properties of the cerebral tissue and the blood–brain barrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baric I, Wagner L, Feyh P, Liesert M, Buckel W, Hoffmann GF (1999) Sensitivity and specificity of free and total glutaric acid and 3-hydroxyglutaric acid measurements by stable-isotope dilution assays for the diagnosis of glutaric aciduria type I. J Inherit Metab Dis 22: 867–881.

    Article  CAS  PubMed  Google Scholar 

  • Beal MF, Swartz KJ, Hyman BT, Storey E, Finn SF, Koroshetz W (1991) Aminooxyacetic acid results in cxcitotoxin lesions by a novel indirect mechanism. J Neurochem 57: 1068–1073.

    Article  CAS  PubMed  Google Scholar 

  • Bennett JP, Logan WJ, Snyder SH (1973) Amino acids as central nervous transmitters: the influence of ions, amino acid analogues, ontogeny on transport systems for l-glutamic and l-aspartic acids and glycine into central nervous synaptosomes of the rat. J Neurochem 21: 1533–1550.

    Article  CAS  PubMed  Google Scholar 

  • Bennett MJ, Marlow N, Pollitt RJ, Wales JK (1986) Glutaric aciduria type 1: biochemical investigations and postmortem findings. Eur J Pediatr 145: 403–405.

    Article  CAS  PubMed  Google Scholar 

  • Bernardi P, Krauskopf A, Basso E, et al (2006) The mitochondrial permeability transition from in vitro artifact to disease target. FEBS J 273: 2077–2099.

    Article  CAS  PubMed  Google Scholar 

  • Brismar J, Ozand PT (1995) CT and MR of the brain in glutaric acidemia type I: a review of 59 published cases and a report of 5 new patients. Am J Neuroradiol 16: 675–683.

    CAS  PubMed  Google Scholar 

  • Buerstatte CR, Behar KL, Novotny EJ, Lai JC (2000) Brain regional development of the activity of alpha-ketoglutarate dehydrogenase complex in the rat. Brain Res Dev Brain Res 125: 139–145.

    Article  CAS  PubMed  Google Scholar 

  • Busquets C, Merinero B, Christensen E, et al (2000) Glutaryl-CoA dehydrogenase deficiency in Spain: evidence of two groups of patients, genetically, and biochemically distinct. Pediatr Res 48: 315–322.

    Article  CAS  PubMed  Google Scholar 

  • Christensen E, Ribes A, Merinero B, Zschocke J (2004) Correlation of genotype and phenotype in glutaryl-CoA dehydrogenase deficiency. J Inherit Metab Dis 27: 861–868. dehydrogenase locus.

    Article  CAS  PubMed  Google Scholar 

  • De Mello CF, Kölker S, Ahlemeyer B, et al (2001) Intrastriatal administration of 3-hydroxyglutaric acid induces convulsions and excitotoxic lesions in rats. Brain Res 916: 70–75.

    Article  PubMed  Google Scholar 

  • Ferreira G da C, Viegas CM, Schuck PF, et al (2005a) Glutaric acid moderately compromises energy metabolism in rat brain. Int J Dev Neurosci 23: 687–693.

    Article  CAS  Google Scholar 

  • Ferreira G da C, Viegas CM, Schuck PF, et al (2005b) Glutaric acid administration impairs energy metabolism in midbrain and skeletal muscle of young rats. Neurochem Res 30: 1123–1131.

    Article  CAS  Google Scholar 

  • Ferreira GD, Schuck PF, Viegas CM, et al (2007) Energy metabolism is compromised in skeletal muscle of rats chronically-treated with glutaric acid. Metab Brain Dis 22(1): 111–123. Epub 2007 Jan 13.

    Article  CAS  Google Scholar 

  • Flott-Rahmel B, Falter C, Schluff P, et al (1997) Nerve cell lesions caused by 3-hydroxyglutaric acid: a possible mechanism for neurodegeneration in glutaric acidaemia type I. J Inherit Metab Dis 20: 387–390.

    Article  CAS  PubMed  Google Scholar 

  • Freudenberg F, Lukacs Z, Ullrich K (2004) 3-Hydroxyglutaric acid fails to affect the viability of primary neuronal rat cells. Neurobiol Dis 16: 581–584.

    Article  CAS  PubMed  Google Scholar 

  • Fu Z, Wang M, Paschke R, Rao KS, Frerman FE, Kim JJ (2004) Crystal structures of human glutaryl-CoA dehydrogenase with and without an alternate substrate: structural bases of dehydrogenation and decarboxylation reactions. Biochemistry 43: 9674–9684.

    Article  CAS  PubMed  Google Scholar 

  • Funk CB, Prasad AN, Del Bigio MR (2004) Attempts to establish a rat model of striatal injury in glutaric acidaemia type I. J Inherit Metab Dis 27: 819–824.

    Article  CAS  PubMed  Google Scholar 

  • Funk CB, Prasad AN, Frosk P, et al (2005) Neuropathological, biochemical and molecular findings in a glutaric acidemia type 1 cohort. Brain 128: 711–722.

    Article  PubMed  Google Scholar 

  • Gerstner B, Gratopp A, Marcinkowski M, Sifringer M, Obladen M, Buhrer C (2005) Glutaric acid and its metabolites cause apoptosis in immature oligodendrocytes: a novel mechanism of white matter degeneration in glutaryl-CoA dehydrogenase deficiency. Pediatr Res 57: 771–776.

    Article  CAS  PubMed  Google Scholar 

  • Gibson GE, Sheu RKF, Blass JP, et al (1988) Reduced activities of thiamine-dependent enzymes in the brains and peripheral tissues of patients with Alzheimer’s disease. Arch Neurol 45: 836–840.

    CAS  PubMed  Google Scholar 

  • Goodman SI, Norenberg MD, Shikes RH, Breslich DJ, Moe PG (1977) Glutaric aciduria: biochemical and morphological considerations. J Pediatr 90: 746–750.

    Article  CAS  PubMed  Google Scholar 

  • Goodman SI, Stein DE, Schlesinger S, et al (1998) Glutaryl-CoA dehydrogenase mutations in glutaric acidemia (type I): review and report of thirty novel mutations. Hum Mutat 12: 141–144.

    Article  CAS  PubMed  Google Scholar 

  • Greenberg CR, Reimer D, Singal R, et al (1995) A G-to-T transversion at the +5 position of intron 1 in the glutaryl CoA dehydrogenase gene is associated with the Island Lake variant of glutaric acidemia type I. Hum Mol Genet 4: 493–495.

    Article  CAS  PubMed  Google Scholar 

  • Greenberg CR, Prasad AN, Dilling LA, et al (2002) Outcome of the first 3-years of a DNA-based neonatal screening program for glutaric acidemia type 1 in Manitoba and northwestern Ontario, Canada. Mol Genet Metab 75: 70–78

    Article  CAS  PubMed  Google Scholar 

  • Hassel B, Brathe A, Petersen DJ (2002) Cerebral dicarboxylate transport and metabolism studied with isotopically labelled fumarate, malate and malonate. J Neurochem 82: 410–419.

    Article  CAS  PubMed  Google Scholar 

  • Hassel B, Brathe A (2000) Cerebral metabolism of lactate in vivo: evidence for neuronal pyruvate carboxylation. J Neurosci 20: 1342–1347.

    CAS  PubMed  Google Scholar 

  • Heyes MP (1987) Hypothesis: a role for quinolinic acid in the neuropathology of glutaric aciduria type I. Can J Neurol Sci 14: 441–443.

    CAS  PubMed  Google Scholar 

  • Hoffmann GF, Athanassopoulos S, Burlina AB, et al (1996) Clinical course, early diagnosis, treatment, prevention of disease in glutaryl-CoA dehydrogenase deficiency. Neuropediatrics 27: 115–123.

    Article  CAS  PubMed  Google Scholar 

  • Huang HM, Ou HC, Xu H, Chen HL, Fowler C, Gibson GE (2003) Inhibition of alpha-ketoglutarate dehydrogenase complex promotes cytochrome c release from mitochondria, caspase-3 activation, necrotic cell death. J Neurosci Res 74: 309–317.

    Article  CAS  PubMed  Google Scholar 

  • Klivenyi P, Starkov AA, Calingasan NY, et al (2004) Mice deficient in dihydrolipoamide dehydrogenase show increased vulnerability to MPTP, malonate and 3-nitropropionic acid neurotoxicity. J Neurochem 88: 1352–1360.

    Article  CAS  PubMed  Google Scholar 

  • Koeller DM, Woontner M, Crnic LS, et al (2002) Biochemical, pathological and behavioral analysis of a mouse model of glutaric acidemia type I. Hum Mol Genet 11: 347–357.

    Article  CAS  PubMed  Google Scholar 

  • Kölker S, Ahlemeyer B, Krieglstein J, Hoffmann GF (2000) Maturation-dependent neurotoxicity of 3-hydroxyglutaric and glutaric acids in vitro: a new pathophysiological approach to glutaryl-CoA dehydrogenase deficiency. Pediatr Res 47: 495–503.

    Article  PubMed  Google Scholar 

  • Kölker S, Ahlemeyer B, Krieglstein J, Hoffmann GF (2001a) Contribution of reactive oxygen species to 3-hydroxyglutarate neurotoxicity in primary neuronal cultures from chick embryo telencephalons. Pediatr Res 50: 76–82.

    Article  PubMed  Google Scholar 

  • Kölker S, Ahlemeyer B, Hühne R, Mayatepek E, Krieglstein J, Hoffmann GF (2001b) Potentiation of 3-hydroxyglutarate neurotoxicity following induction of astrocytic iNOS in neonatal rat hippocampal cultures. Eur J Neurosci 13: 2115–2122.

    Article  PubMed  Google Scholar 

  • Kölker S, Köhr G, Ahlemeyer B, et al (2002a) Ca2+ and Na+ dependence of 3-hydroxyglutarate-induced excitotoxicity in primary neuronal cultures from chick embryo telencephalons. Pediatr Res 52: 199–206.

    Article  PubMed  Google Scholar 

  • Kölker S, Okun JG, Ahlemeyer B, et al (2002b) Chronic treatment with glutaric acid induces partial tolerance to excitotoxicity in neuronal cultures from chick embryo telencephalons. J Neurosci Res 68: 424–431.

    Article  PubMed  Google Scholar 

  • Kölker S, Hoffmann GF, Schor DS, et al (2003) Glutaryl-CoA dehydrogenase deficiency: region-specific analysis of organic acids and acylcarnitines in post mortem brain predicts vulnerability of the putamen. Neuropediatrics 34: 253–260.

    Article  PubMed  Google Scholar 

  • Kölker S, Koeller DM, Okun JG, Hoffmann GF (2004) Pathomechanisms of neurodegeneration in glutaryl-CoA dehydrogenase deficiency. Ann Neurol 55: 7–12.

    Article  PubMed  Google Scholar 

  • Kölker S, Garbade SF, Greenberg CR et al (2006a) Natural history, outcome, and treatment efficacy in children and adults with glutaryl-CoA degydrogenase deficiency. Pediatr Res 59: 840–847.

    Article  PubMed  Google Scholar 

  • Kölker S, Sauer SW, Surtees RA, Leonard JV (2006b) The aetiology of neurological complications of organic acidaemias—A role for the blood–brain barrier. J Inherit Metab Dis 29: 701–704.

    Article  PubMed  Google Scholar 

  • Kölker S, Christensen E, Leonard JV, et al (2007) Guideline for the diagnosis and managment of glutaryl-CoA dehydrogenase deficiency (glutaric aciduria type I) J Inherit Metab Dis 30: 5–22.

    Article  PubMed  Google Scholar 

  • Külkens S, Harting I, Sauer S, et al (2005) Late-onset neurological disease in glutaryl-CoA dehydrogenase deficiency. Neurology 64: 2142–2144.

    Article  PubMed  Google Scholar 

  • Kyllerman M, Skjeldal O, Christensen E, et al (2004) Long-term follow-up, neurological outcome and survival rate in 28 Nordic patients with glutaric aciduria type 1. Eur J Paediatr Neurol 8: 121–129.

    Article  PubMed  Google Scholar 

  • Latini A, Borba Rosa R, Scussiato K, Llesuy S, Bello-Klein A, Wajner M (2002) 3-Hydroxyglutaric acid induces oxidative stress and decreases the antioxidant defenses in cerebral cortex of young rats. Brain Res 956: 367–373.

    Article  CAS  PubMed  Google Scholar 

  • Latini A, Rodriguez M, Borba Rosa R, et al (2005) 3-Hydroxyglutaric acid moderately impairs energy metabolism in brain of young rats. Neuroscience 135: 111–120.

    Article  CAS  PubMed  Google Scholar 

  • Leibel RL, Shih VE, Goodman SI, et al (1980) Glutaric acidemia: a metabolic disorder causing progressive choreoathetosis. Neurology 30: 1163–1168.

    CAS  PubMed  Google Scholar 

  • Lindner M, Kölker S, Schulze A, Christensen E, Greenberg CR, Hoffmann GF (2004) Neonatal screening for glutaryl-CoA dehydrogenase deficiency. J Inherit Metab Dis 27: 851–859.

    Article  CAS  PubMed  Google Scholar 

  • Lund TM, Christensen E, Kristensen E, Schousboe A, Lund AM (2004) On the neurotoxicity of glutaric, 3-hydroxyglutaric, and trans-glutaconic acids in glutaric aciduria type 1. J Neurosci Res 77: 143–147.

    Article  CAS  PubMed  Google Scholar 

  • Mizuno Y, Matsuda S, Yoshino H, Mori H, Hattori N, Ikebe SI (1994) An immunohistochemical study on alpha-ketoglutarate dehydrogenase complex in Parkinson’s disease. Ann Neurol 35: 204–210.

    Article  CAS  PubMed  Google Scholar 

  • Mizuno Y, Ikebe S, Hattori N, et al (1995) Role of mitochondria in the etiology and pathogenesis of Parkinson’s disease. Biochim Biophys Acta 1271: 265–274.

    PubMed  Google Scholar 

  • Muhlhausen C, Ott N, Chalajour F, et al (2006) Endothelial effects of 3-hydroxyglutaric acid: implications for glutaric aciduria type I. Pediatr Res 59: 196–202.

    Article  PubMed  Google Scholar 

  • Naughten ER, Mayne PD, Monavari AA, Goodman SI, Sulaiman G, Croke DT (2004) Glutaric aciduria type I: outcome in the Republic of Ireland. J Inherit Metab Dis 27: 917–920.

    Article  CAS  PubMed  Google Scholar 

  • Neumaier-Probst E, Harting I, Seitz A, Ding C, Kolker S (2004) Neuroradiological findings in glutaric aciduria type I (glutaryl-CoA dehydrogenase deficiency) J Inherit Metab Dis 27: 869–876.

    Article  CAS  PubMed  Google Scholar 

  • Novelli A, Reilly JA, Lysko PG, Henneberry RC (1988) Glutamate becomes neurotoxic via the N-methyl-d-aspartate receptor when intracellular energy levels are reduced. Brain Res 451: 205–212.

    Article  CAS  PubMed  Google Scholar 

  • Olney JW, Sharpe LG (1969) Brain lesions in an infant rhesus monkey treated with monsodium glutamate. Science 166: 386–388.

    Article  CAS  PubMed  Google Scholar 

  • Porciuncula LO, Dal-Pizzol A Jr, Coitinho AS, Emanuelli T, Souza DO, Wajner M (2000) Inhibition of synaptosomal [3H]glutamate uptake and [3H]glutamate binding to plasma membranes from brain of young rats by glutaric acid in vitro. J Neurol Sci 73: 93–96.

    Article  Google Scholar 

  • Rosa RB, Schwarzbold C, Dalcin KB, et al (2004) Evidence that 3-hydroxyglutaric acid interacts with NMDA receptors in synaptic plasma membranes from cerebral cortex of young rats. Neurochem Int 45: 1087–1094.

    Article  CAS  PubMed  Google Scholar 

  • Sauer SW, Okun JG, Schwab MA, et al (2005) Bioenergetics in glutaryl-coenzyme A dehydrogenase deficiency: a role for glutaryl-coenzyme A. J Biol Chem 280: 21830–21836.

    Article  CAS  PubMed  Google Scholar 

  • Sauer SW, Okun JG, Fricker G, et al (2006) Intracerebral accumulation of glutaric and 3-hydroxyglutaric acids secondary to limited flux across the blood–brain barrier constitute a biochemical risk factor for neurodegeneration in glutaryl-CoA dehydrogenase deficiency. J Neurochem 97: 899–910.

    Article  CAS  PubMed  Google Scholar 

  • Schousboe A, Westergaard N, Waagepetersen HS, Larsson OM, Barken IJ, Sonnewald U (1997) Trafficking between glia and neurons of TCA cycle intermediates and related metabolites. Glia 21: 99–105.

    Article  CAS  PubMed  Google Scholar 

  • Silva CG, Silva AR, Ruschel C, et al (2000) Inhibition of energy production in vitro by glutaric acid in cerebral cortex of young rats. Metab Brain Dis 15: 123–131.

    Article  CAS  PubMed  Google Scholar 

  • Stokke O, Goodman SI, Moe PG (1976) Inhibition of brain glutamate decarboxylase by glutarate, glutaconate, and beta-hydroxyglutarate: explanation of the symptoms in glutaric aciduria? Clin Chim Acta 66: 411–415.

    Article  CAS  PubMed  Google Scholar 

  • Storey E, Hyman BT, Jenkins BT, et al (1992) MPP produces excitotoxic lesions in rat striatum due to impairment of oxidative metabolism. J Neurochem 58: 1975–1978.

    Article  CAS  PubMed  Google Scholar 

  • Strauss KA, Morton DH (2003) Type I glutaric aciduria, part 2: A model of acute striatal necrosis. Am J Med Genet C Semin Med Genet 121: 53–70.

    Article  Google Scholar 

  • Strauss KA, Puffenberger EG, Robinson DL, Morton DH (2003) Type I glutaric aciduria, part 1: natural history of 77 patients. Am J Med Genet C Semin Med Genet 121: 38–52.

    Article  Google Scholar 

  • Tamai I, Tsuji A (2000) Transporter-mediated permeation of drugs across the blood–brain barrier. J Pharm Sci 89: 1371–1388.

    Article  CAS  PubMed  Google Scholar 

  • Twomey EL, Naughten ER, Donoghue VB, Ryan S (2003) Neuroimaging findings in glutaric aciduria type 1. Pediatr Radiol 33: 823–830.

    Article  PubMed  Google Scholar 

  • Ullrich K, Flott-Rahmel B, Schluff P, et al (1999) Glutaric aciduria type I: pathomechanisms of neurodegeneration. J Inherit Metab Dis 22: 392–403.

    Article  CAS  PubMed  Google Scholar 

  • Varadkar S, Surtees R (2004) Glutaric aciduria type I and kynurenine pathway metabolites: a modified hypothesis. J Inherit Metab Dis 27: 835–842.

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Fei YJ, Kekuda R, et al (2000) Structure, function, and genomic organization of human Na+-dependent high-affinity dicarboxylate transporter. Am J Physiol Cell Physiol 278: C1019–C1030.

    CAS  PubMed  Google Scholar 

  • Woontner M, Crnic LS, Koeller DM (2000) Analysis of the expression of murine glutaryl-CoA dehydrogenase: in vitro and in vivo studies. Mol Genet Metab 69: 116–122.

    Article  CAS  PubMed  Google Scholar 

  • Yodoya E, Wada M, Shimada A, et al (2006) Functional and molecular identification of sodium-coupled dicarboxylate transporters in rat primary cultured cerebrocortical astrocytes and neurons. J Neurochem 97: 162–173.

    Article  CAS  PubMed  Google Scholar 

  • Zeevalk GD, Nicklas WJ (1990) Chemically induced hypoglycemia and anoxia: relationship to glutamate receptor-mediated toxicity in retina. J Pharm Exp Ther 253: 1285–1292.

    CAS  Google Scholar 

  • Zeevalk GD, Nicklas WJ (1991) Mechanisms underlying initiation of excitotoxicity associated with metabolic inhibition. J Pharm Exp Ther 257: 870–878.

    CAS  Google Scholar 

  • Zinnanti WJ, Lazovic J, Wolpert EB, et al (2006) A diet-induced mouse model for glutaric aciduria type I. Brain 129: 899–910.

    Article  PubMed  Google Scholar 

  • Zschocke J, Quak E, Guldberg P, Hoffmann GF (2000) Mutation analysis in glutaric aciduria type I. J Med Genet 37: 177–181.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. W. Sauer.

Additional information

Communicating editor: Michael Gibson

Competing interests: None declared

References to electronic databases: Glutaryl-CoA dehydrogenase deficiency (GDD), OMIM #231670). Glutaryl-CoA dehydrogenase (GCDH) EC 1.3.99.7.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sauer, S.W. Biochemistry and bioenergetics of glutaryl-CoA dehydrogenase deficiency. J Inherit Metab Dis 30, 673–680 (2007). https://doi.org/10.1007/s10545-007-0678-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-007-0678-8

Keywords

Navigation