Skip to main content
Log in

Mitochondrial complex I: Structure, function and pathology

  • Review
  • Published:
Journal of Inherited Metabolic Disease

Summary

Oxidative phosphorylation (OXPHOS) has a prominent role in energy metabolism of the cell. Being under bigenomic control, correct biogenesis and functioning of the OXPHOS system is dependent on the finely tuned interaction between the nuclear and the mitochondrial genome. This suggests that disturbances of the system can be caused by numerous genetic defects and can result in a variety of metabolic and biochemical alterations. Consequently, OXPHOS deficiencies manifest as a broad clinical spectrum. Complex I, the biggest and most complicated enzyme complex of the OXPHOS system, has been subjected to thorough investigation in recent years. Significant progress has been made in the field of structure, composition, assembly, and pathology. Important gains in the understanding of the Goliath of the OXPHOS system are: exposing the electron transfer mechanism and solving the crystal structure of the peripheral arm, characterization of almost all subunits and some of their functions, and creating models to elucidate the assembly process with concomitant identification of assembly chaperones. Unravelling the intricate mechanisms underlying the functioning of this membrane-bound enzyme complex in health and disease will pave the way for developing adequate diagnostic procedures and advanced therapeutic treatment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ACP:

acyl carrier protein

ADP:

adenosine 5-diphosphate

ATP:

adenosine 5-triphosphate

cyt c :

cytochrome c

EPR:

electron paramagnetic resonance

EPR:

electron paramagnetic resonance

ESI-MS:

electrospray ionization mass spectrometry

FMN:

flavin mononucleotide

GRIM:

gene associated with retinoid-interferon-induced mortality

HPLC:

high-pressure liquid chromatography

IEF:

isoelectric focusing

LDAO:

lauryldimethylamine oxide (N,N-dimethyldodecylamine N-oxide)

LHON:

Leber hereditary optic neuropathy

MELAS:

mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes

MERRF:

myoclonus epilepsy and ragged red fibres

mtDNA:

mitochondrial DNA

nDNA:

nuclear DNA

OXPHOS:

oxidative phosphorylation

Q:

ubiquinone

ROS:

reactive oxygen species

SDS-PAGE:

sodium dodecyl sulfate–polyacrylamide gel electrophoresis

References

  • Acin-Perez R, Bayona-Bafaluy MP, Fernandez-Silva P, et al (2004) Respiratory complex III is required to maintain complex I in mammalian mitochondria. Mol Cell 13: 805–815.

    Article  PubMed  CAS  Google Scholar 

  • Angell JE, Lindner DJ, Shapiro PS, Hofmann ER, Kalvakolanu DV (2000) Identification of GRIM-19, a novel cell death-regulatory gene induced by the interferon-beta and retinoic acid combination, using a genetic approach. J Biol Chem 275: 33416–33426.

    Article  PubMed  CAS  Google Scholar 

  • Antonicka H, Ogilvie I, Taivassalo T, et al (2003) Identification and characterization of a common set of complex I assembly intermediates in mitochondria from patients with complex I deficiency. J Biol Chem 3278: 43081–43088.

    Article  CAS  Google Scholar 

  • Arenas J, Campos Y, Ribacoba R (1998) Complex I defect in muscle from patients with Huntington's disease. Ann Neurol 43: 397–400.

    Article  PubMed  CAS  Google Scholar 

  • Atorino L, Silvestri L, Koppen M, et al (2003) Loss of m-AAA protease in mitochondria causes complex I deficiency and increased sensitivity to oxidative stress in hereditary spastic paraplegia. J Cell Biol 163: 777–787.

    Article  PubMed  CAS  Google Scholar 

  • Augereau O, Claverol S, Boudes N, et al (2005) Identification of tyrosine-phosphorylated proteins of the mitochondrial oxidative phosphorylation machinery. Cell Mol Life Sci 62: 1478–1488.

    Article  PubMed  CAS  Google Scholar 

  • Bai Y, Attardi G (1998) The mtDNA-encoded ND6 subunit of mitochondrial NADH dehydrogenase is essential for the assembly of the membrane arm and the respiratory function of the enzyme. EMBO J 17: 4848–4858.

    Article  PubMed  CAS  Google Scholar 

  • Bender A, Krishnan KJ, Morris CM, et al (2006) High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet 38: 515–517.

    Article  PubMed  CAS  Google Scholar 

  • Benit P, Chretien D, Kadhom N, et al (2001) Large-scale deletion and point mutations of the nuclear NDUFV1 and NDUFS1 genes in mitochondrial complex I deficiency. Am J Hum Genet 68: 1344–1352.

    Article  PubMed  CAS  Google Scholar 

  • Benit P, Beugnot R, Chretien D, et al (2003a) Mutant NDUFV2 subunit of mitochondrial complex I causes early onset hypertrophic cardiomyopathy and encephalopathy. Hum Mutat 21: 582–586.

    Article  CAS  Google Scholar 

  • Benit P, Steffann J, Lebon S, et al (2003b) Genotyping microsatellite DNA markers at putative disease loci in inbred/multiplex families with respiratory chain complex I deficiency allows rapid identification of a novel nonsense mutation (IVS1nt -1) in the NDUFS4 gene in Leigh syndrome. Hum Genet 112: 563–566.

    CAS  Google Scholar 

  • Benit P, Slama A, Cartault F, et al (2004) Mutant NDUFS3 subunit of mitochondrial complex I causes Leigh syndrome. J Med Genet 41: 14–17.

    Article  PubMed  CAS  Google Scholar 

  • Blakely EL, de Silva R, King A, et al (2005) LHON/MELAS overlap syndrome associated with a mitochondrial MTND1 gene mutation. Eur J Hum Genet 13: 623–627.

    Article  PubMed  CAS  Google Scholar 

  • Bottcher B, Scheide D, Hesterberg M, Nagel-Steger L, Friedrich T (2002) A novel, enzymatically active conformation of the Escherichia coli NADH:ubiquinone oxidoreductase (complex I). J Biol Chem 277: 17970–17977.

    Article  PubMed  CAS  Google Scholar 

  • Bourges I, Ramus C, Mousson de Camaret B, et al (2004) Structural organization of mitochondrial human complex I: role of the ND4 and ND5 mitochondria-encoded subunits and interaction with prohibitin. Biochem J 383: 491–499.

    Article  PubMed  CAS  Google Scholar 

  • Brandt U, Kerscher S, Drose S, Zwicker K, Zickermann V (2003) Proton pumping by NADH:ubiquinone oxidoreductase. A redox driven conformational change mechanism? FEBS Lett 545: 9–17.

    Article  PubMed  CAS  Google Scholar 

  • Brown MD, Voljavec AS, Lott MT, Torroni A, Yang CC, Wallace DC (1992) Mitochondrial DNA complex I and III mutations associated with Leber's hereditary optic neuropathy. Genetics 130: 163–173.

    PubMed  CAS  Google Scholar 

  • Brown MD, Starikovskaya E, Derbeneva O, et al (2002) The role of mtDNA background in disease expression: a new primary LHON mutation associated with Western Eurasian haplogroup J. Hum Genet 110: 130–138.

    Article  PubMed  CAS  Google Scholar 

  • Budde SM, van den Heuvel LP, Janssen AJ, et al (2000) Combined enzymatic complex I and III deficiency associated with mutations in the nuclear-encoded NDUFS4 gene. Biochem Biophys Res Commun 275: 63–68.

    Article  PubMed  CAS  Google Scholar 

  • Bugiani M, Invernizzi F, Alberio S, et al (2004) Clinical and molecular findings in children with complex I deficiency. Biochim Biophys Acta 1659: 136–147.

    Article  PubMed  CAS  Google Scholar 

  • Carroll J, Shannon RJ, Fearnley IM, Walker JE, Hirst J (2002) Definition of the nuclear-encoded protein composition of bovine heart mitochondrial complex I. Identification of two new subunits. J Biol Chem 277: 50311–50317.

    Article  PubMed  CAS  Google Scholar 

  • Carroll J, Fearnley IM, Shannon RJ, Hirst J, Walker JE (2003) Analysis of the subunit composition of complex I from bovine heart mitochondria. Mol Cell Proteomics 2: 117–126.

    Article  PubMed  CAS  Google Scholar 

  • Carroll J, Fearnley IM, Skehel JM, et al (2005) The post-translational modifications of the nuclear-encoded subunits of complex I from bovine heart mitochondria. Mol Cell Proteomics 4: 693–699.

    Article  PubMed  CAS  Google Scholar 

  • Chen R, Fearnley IM, Peak-Chew SY, Walker JE (2004) The phosphorylation of subunits of complex I from bovine heart mitochondria. J Biol Chem 279: 26036–26045.

    Article  PubMed  CAS  Google Scholar 

  • Chevallet M, Dupuis A, Lunardi J, van Belzen R, Albracht SP, Issartel JP (1997) The NuoI subunit of the Rhodobacter capsulatus respiratory complex I (equivalent to the bovine TYKY subunit) is required for proper assembly of the membraneous and peripheral domains of the enzyme. Eur J Biochem 250: 451–458.

    Article  PubMed  CAS  Google Scholar 

  • Chinnery PF, Brown DT, Andrews RM, et al (2001) The mitochondrial ND6 gene is a hot spot for mutations that cause Leber's hereditary optic neuropathy. Brain 124: 209–218.

    Article  PubMed  CAS  Google Scholar 

  • Chomyn A (2001) Mitochondrial genetic control of assembly and function of complex I in mammalian cells. J Bioenerg Biomembr 33: 251–257.

    Article  PubMed  CAS  Google Scholar 

  • Crimi M, Galbiati S, Moroni I, et al (2003) A missense mutation in the mitochondrial ND5 gene associated with a Leigh-MELAS overlap syndrome. Neurology 60: 1857–1861.

    PubMed  Google Scholar 

  • Crimi M, Papadimitriou A, Galbiati S, et al (2004) A new mitochondrial DNA mutation in ND3 gene causing severe Leigh syndrome with early lethality. Pediatr Res 55: 842–846.

    Article  PubMed  Google Scholar 

  • Cronan JE, Fearnley M, Walker JE (2005) Mammalian mitochondria contain a soluble acyl carrier protein. FEBS Lett 579: 4892–4896.

    Article  PubMed  CAS  Google Scholar 

  • De Lonlay P, Valnot I, Barrientos A, et al (2001) A mutant mitochondrial respiratory chain assembly protein causes complex III deficiency in patients with tubulopathy, encephalopathy and liver failure. Nat Genet 29: 57–60.

    Article  PubMed  CAS  Google Scholar 

  • DiMauro S, Hirano M (2005) Mitochondrial encephalomyopathies: an update. Neuromuscul Disord 15: 276–286.

    Article  PubMed  Google Scholar 

  • Djafarzadeh R, Kerscher S, Zwicker K, et al (2000) Biophysical and structural characterization of proton-translocating NADH-dehydrogenase (complex I) from the strictly aerobic yeast Yarrowia lipolytica. Biochim Biophys Acta 1459: 230–238.

    Article  PubMed  CAS  Google Scholar 

  • Fearnley IM, Carroll J, Shannon RJ, Runswick MJ, Walker JE, Hirst J (2001) GRIM-19, a cell death regulatory gene product, is a subunit of bovine mitochondrial NADH:ubiquinone oxidoreductase (complex I). J Biol Chem 276: 38345–38348.

    Article  PubMed  CAS  Google Scholar 

  • Friedrich T (2001) Complex I: a chimaera of a redox and conformation-driven proton pump? J Bioenerg Biomembr 33: 169–177.

    Article  PubMed  CAS  Google Scholar 

  • Friedrich T, Bottcher B (2004) The gross structure of the respiratory complex I: a Lego system. Biochim Biophys Acta 1608: 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Friedrich T, Weiss H (1997) Modular evolution of the respiratory NADH:ubiquinone oxidoreductase and the origin of its modules. J Theor Biol 187: 529–540.

    Article  PubMed  CAS  Google Scholar 

  • Gabaldon T, Rainey D, Huynen MA (2005) Tracing the evolution of a large protein complex in the eukaryotes, NADH:ubiquinone oxidoreductase (Complex I). J Mol Biol 348: 857–870.

    Article  PubMed  CAS  Google Scholar 

  • Greenamyre JT, Shere TB, Betarbet R, Panov AV (2001) Complex I and Parkinson's disease. IUBMB Life 52: 135–141.

    PubMed  CAS  Google Scholar 

  • Grigorieff N (1998) Three-dimensional structure of bovine NADH:ubiquinone oxidoreductase (complex I) at 22 A in ice. J Mol Biol 277: 1033–1046.

    Article  PubMed  CAS  Google Scholar 

  • Grigorieff N (1999) Structure of the respiratory NADH:ubiquinone oxidoreductase (complex I). Curr Opin Struct Biol 9: 476–483.

    Article  PubMed  CAS  Google Scholar 

  • Guenebaut V, Schlitt A, Weiss H, Leonard K, Friedrich T (1998) Consistent structure between bacterial and mitochondrial NADH:ubiquinone oxidoreductase (complex I). J Mol Biol 276: 105–112.

    Article  PubMed  CAS  Google Scholar 

  • Hatefi Y (1985) The mitochondrial electron transport and oxidative phosphorylation system. Annu Rev Biochem 54: 1015–1069.

    Article  PubMed  CAS  Google Scholar 

  • Hattori N, Yoshino H, Tanaka M, Suzuki H, Mizuno Y (1998) Genotype in the 24-kDa subunit gene (NDUFV2) of mitochondrial complex I and susceptibility to Parkinson disease. Genomics 49: 52–58.

    Article  PubMed  CAS  Google Scholar 

  • Haut S, Brivet M, Touati G, et al (2003) A deletion in the human QP-C gene causes a complex III deficiency resulting in hypoglycaemia and lactic acidosis. Hum Genet 113: 118–122.

    PubMed  CAS  Google Scholar 

  • Hinchliffe P, Sazanov LA (2005) Organization of iron-sulphur clusters in respiratory complex I. Science 309: 771–774.

    Article  PubMed  CAS  Google Scholar 

  • Hirst J, Carroll J, Fearnley IM, Shannon RJ, Walker JE (2003) The nuclear encoded subunits of complex I from bovine heart mitochondria. Biochim Biophys Acta 1604: 135–150.

    Article  PubMed  CAS  Google Scholar 

  • Hofhaus G, Weiss H, Leonard K (1991) Electron microscopic analysis of the peripheral and membrane parts of mitochondrial NADH dehydrogenase (complex I). J Mol Biol 221: 1027–1043.

    Article  PubMed  CAS  Google Scholar 

  • Holt PJ, Morgan DJ, Sazanov LA (2003) The location of NuoL and NuoM subunits in the membrane domain of the Escherichia coli complex I: implications for the mechanism of proton pumping. J Biol Chem 278: 43114–43120.

    Article  PubMed  CAS  Google Scholar 

  • Huang G, Lu H, Hao A, et al (2004) GRIM-19, a cell death regulatory protein, is essential for assembly and function of mitochondrial complex I. Mol Cell Biol 24: 8447–8456.

    Article  PubMed  CAS  Google Scholar 

  • Janssen R, Smeitink J, Smeets R, van Den Heuvel L (2002) CIA30 complex I assembly factor: a candidate for human complex I deficiency? Hum Genet 110: 264–270.

    Article  PubMed  CAS  Google Scholar 

  • Jun AS, Trounce IA, Brown MD, Shoffner JM, Wallace DC (1996) Use of transmitochondrial cybrids to assign a complex I defect to the mitochondrial DNA-encoded NADH dehydrogenase subunit 6 gene mutation at nucleotide pair 14459 that causes Leber hereditary optic neuropathy and dystonia. Mol Cell Biol 16: 771–777.

    PubMed  CAS  Google Scholar 

  • Karry R, Klein E, Ben Shachar D (2004) Mitochondrial complex I subunits expression is altered in schizophrenia: a postmortem study. Biol Psychiatry 55: 676–684.

    Article  PubMed  CAS  Google Scholar 

  • Keeney P, Xie J, Capaldi RA, Bennett Jr JP (2006) Parkinson's disease brain mitochondrial complex I has oxidatively damaged subunits and is functionally impaired and misassembled. J Neurosci 26: 5256–5264.

    Article  PubMed  CAS  Google Scholar 

  • Kennelly PJ, Krebs EG (1991) Consensus sequences as substrate specificity determinants for protein kinases and protein phosphatases. J Biol Chem 266: 15555–15558.

    PubMed  CAS  Google Scholar 

  • Kim SH, Vlkolinsky R, Cairns N, Fountoulakis M, Lubec G (2001) The reduction of NADH ubiquinone oxidoreductase 24- and 75-kDa subunits in brains of patients with Down syndrome and Alzheimer's disease. Life Sci 68: 2741–2750.

    Article  PubMed  CAS  Google Scholar 

  • Kirby DM, Kahler SG, Freckmann ML, Reddihough D, Thorburn DR (2000) Leigh disease caused by the mitochondrial DNA G14459A mutation in unrelated families. Ann Neurol 48: 102–104.

    Article  PubMed  CAS  Google Scholar 

  • Kirby DM, Boneh A, Chow CW, et al (2003) Low mutant load of mitochondrial DNA G13513A mutation can cause Leigh's disease. Ann Neurol 54: 473–478.

    Article  PubMed  CAS  Google Scholar 

  • Kirby DM, McFarland R, Ohtake A, et al (2004a) Mutations of the mitochondrial ND1 gene as a cause of MELAS. J Med Genet 41: 784–789.

    Article  CAS  Google Scholar 

  • Kirby DM, Salemi R, Sugiana C, et al (2004b) NDUFS6 mutations are a novel cause of lethal neonatal mitochondrial complex I deficiency. J Clin Invest 114: 837–845.

    Article  CAS  Google Scholar 

  • Kovacs GG, Hoftberger R, Majtenyi K, et al (2005) Neuropathology of white matter disease in Leber's hereditary optic neuropathy. Brain 128: 35–41.

    Article  PubMed  Google Scholar 

  • Kraytsberg Y, Kudryavtseva E, McKee AC, Geula C, Kowall NW, Khrapko K (2006) Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat Genet 38: 518–520.

    Article  PubMed  CAS  Google Scholar 

  • Kuffner R, Rohr A, Schmiede A, Krull C, Schulte U (1998) Involvement of two novel chaperones in the assembly of mitochondrial NADH:Ubiquinone oxidoreductase (complex I). J Mol Biol 283: 409–417.

    Article  PubMed  CAS  Google Scholar 

  • Leigh D (1951) Subacute necrotizing encephalomyelopathy in an infant. J Neurol Neurosurg Psychiatry 14: 216–221.

    Article  PubMed  CAS  Google Scholar 

  • Leonard JV, Schapira AH (2000) Mitochondrial respiratory chain disorders I: mitochondrial DNA defects. Lancet 355: 299–304.

    Article  PubMed  CAS  Google Scholar 

  • Leshinsky-Silver E, Lev D, Tzofi-Berman Z, et al (2005) Fulminant neurological deterioration in a neonate with Leigh syndrome due to a maternally transmitted missense mutation in the mitochondrial ND3 gene. Biochem Biophys Res Commun 334: 582–587.

    Article  PubMed  CAS  Google Scholar 

  • Loeffen J, Smeitink J, Triepels R, et al (1998) The first nuclear-encoded complex I mutation in a patient with Leigh syndrome. Am J Hum Genet 63: 1598–608.

    Article  PubMed  CAS  Google Scholar 

  • Loeffen JL, Smeitink JA, Trijbels JM, et al (2000) Isolated complex I deficiency in children: clinical, biochemical and genetic aspects. Hum Mutat 15: 123–134.

    Article  PubMed  CAS  Google Scholar 

  • Loeffen J, Elpeleg O, Smeitink J, et al (2001) Mutations in the complex I NDUFS2 gene of patients with cardiomyopathy and encephalomyopathy. Ann Neurol 49: 195–201.

    Article  PubMed  CAS  Google Scholar 

  • Martin MA, Blazquez A, Gutierrez-Solana LG, et al (2005) Leigh syndrome associated with mitochondrial complex I deficiency due to a novel mutation in the NDUFS1 gene. Arch Neurol 62: 659–661.

    Article  PubMed  Google Scholar 

  • Munakata K, Tanaka M, Mori K, et al (2004) Mitochondrial DNA 3644T→C mutation associated with bipolar disorder. Genomics 84: 1041–1050.

    Article  PubMed  CAS  Google Scholar 

  • Murray J, Zhang B, Taylor SW, et al (2003) The subunit composition of the human NADH dehydrogenase obtained by rapid one-step immunopurification. J Biol Chem 278: 13619–13622.

    Article  PubMed  CAS  Google Scholar 

  • Naini AB, Lu J, Kaufmann P, et al (2005) Novel mitochondrial DNA ND5 mutation in a patient with clinical features of MELAS and MERRF. Arch Neurol 62: 473–476.

    Article  PubMed  Google Scholar 

  • Nijtmans LG, de Jong L, Artal Sanz M, et al (2000) Prohibitins act as a membrane-bound chaperone for the stabilisation of mitochondrial proteins. EMBO J 19: 2444–2451.

    Article  PubMed  CAS  Google Scholar 

  • Nijtmans LG, Ugalde C, van den Heuvel LP, Smeitink JA (2004) Function and dysfunction of the oxidative phosphorylation system. In: Koehler CM, Bauer MF, eds. Topics in Current Genetics: Mitochondrial Function and Biogenesis. Berlin/Heidelberg: Springer, 8: 149–176.

    Google Scholar 

  • Nolden M, Ehses S, Koppen M, Bernacchia A, Rugarli EI, Langer T (2005) The m-AAA protease defective in hereditary spastic paraplegia controls ribosome assembly in mitochondria. Cell 123: 277–289.

    Article  PubMed  CAS  Google Scholar 

  • Ogilvie I, Kennaway NG, Shoubridge EA (2005) A molecular chaperone for mitochondrial complex I assembly is mutated in a progressive encephalopathy. J Clin Invest 115: 2784–2792.

    Article  PubMed  CAS  Google Scholar 

  • Ohnishi T, Salerno JC (2005) Conformation-driven and semiquinone-gated proton-pump mechanism in the NADH-ubiquinone oxidoreductase (complex I). FEBS Lett. 579: 4555–4561.

    Article  PubMed  CAS  Google Scholar 

  • Papa S, Sardanelli AM, Scacco S, et al (2002) The NADH: ubiquinone oxidoreductase (complex I) of the mammalian respiratory chain and the cAMP cascade. J Bioenerg Biomembr 34: 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Parker WD Jr, Parks JK (2005) Mitochondrial ND5 mutations in idiopathic Parkinson's disease. Biochem Biophys Res Commun 326: 667–669.

    Article  PubMed  CAS  Google Scholar 

  • Petruzzella V, Vergari R, Puzziferri I, et al (2001) A nonsense mutation in the NDUFS4 gene encoding the 18 kDa (AQDQ) subunit of complex I abolishes assembly and activity of the complex in a patient with Leigh-like syndrome. Hum Mol Genet 10: 529–535.

    Article  PubMed  CAS  Google Scholar 

  • Pitkanen S, Feigenbaum A, Laframboise R, Robinson BH (1996) NADH-coenzyme Q reductase (complex I) deficiency: heterogeneity in phenotype and biochemical findings. J Inherit Metab Dis 19: 675–686.

    Article  PubMed  CAS  Google Scholar 

  • Potluri P, Yadava N, Scheffler IE (2004) The role of the ESSS protein in the assembly of a functional and stable mammalian mitochondrial complex I (NADH-ubiquinone oxidoreductase). Eur J Biochem 271: 3265–3273.

    Article  PubMed  CAS  Google Scholar 

  • Procaccio V, Wallace DC (2004) Late-onset Leigh syndrome in a patient with mitochondrial complex I NDUFS8 mutations. Neurology 62: 1899–1901.

    PubMed  Google Scholar 

  • Pulkes T, Eunson L, Patterson V, et al (1999) The mitochondrial DNA G13513A transition in ND5 is associated with a LHON/MELAS overlap syndrome and may be a frequent cause of MELAS. Ann Neurol 46: 916–919.

    Article  PubMed  CAS  Google Scholar 

  • Rahman S, Blok RB, Dahl HH, et al (1996) Leigh syndrome: clinical features and biochemical and DNA abnormalities. Ann Neurol 39: 343–351.

    Article  PubMed  CAS  Google Scholar 

  • Ravn K, Wibrand F, Hansen FJ, Horn N, Rosenberg T, Schwartz M (2001) An mtDNA mutation, 14453G→A, in the NADH dehydrogenase subunit 6 associated with severe MELAS syndrome. Eur J Hum Genet 9: 805–809.

    Article  PubMed  CAS  Google Scholar 

  • Santorelli FM, Tanji K, Kulikova R, et al (1997) Identification of a novel mutation in the mtDNA ND5 gene associated with MELAS. Biochem Biophys Res Commun 238: 326–328.

    Article  PubMed  CAS  Google Scholar 

  • Sazanov LA, Hinchliffe P (2006) Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus. Science 311: 1430–1436.

    Article  PubMed  CAS  Google Scholar 

  • Sazanov LA, Walker JE (2000) Cryo-electron crystallography of two sub-complexes of bovine complex I reveals the relationship between the membrane and peripheral arms. J Mol Biol 302: 455–464.

    Article  PubMed  CAS  Google Scholar 

  • Sazanov LA, Peak-Chew SY, Fearnley IM, Walker JE (2000) Resolution of the membrane domain of bovine complex I into subcomplexes: implications for the structural organization of the enzyme. Biochemistry 39: 7229–7235.

    Article  PubMed  CAS  Google Scholar 

  • Sazanov LA, Carroll J, Holt P, Toime L, Fearnley IM (2003) A role for native lipids in the stabilisation and two-dimensional crystallization of the Escherichia coli NADH-ubiquinone oxidoreductase (complex I). J Biol Chem 278: 19483–19491.

    Article  PubMed  CAS  Google Scholar 

  • Scacco S, Petruzzella V, Budde S, et al (2003) Pathological mutations of the human NDUFS4 gene of the 18-kDa (AQDQ) subunit of complex I affect the expression of the protein and the assembly and function of the complex. J Biol Chem 278: 44161–44167.

    Article  PubMed  CAS  Google Scholar 

  • Scaglia F, Towbin JA, Craigen WJ, et al (2004) Clinical spectrum, morbidity, and mortality in 113 pediatric patients with mitochondrial disease. Pediatrics 114: 925–931.

    Article  PubMed  Google Scholar 

  • Schägger H (2002) Respiratory chain supercomplexes of mitochondria and bacteria. Biochim Biophys Acta 1555: 154–159.

    Article  PubMed  Google Scholar 

  • Schägger H, Pfeiffer K. (2000) Supercomplexes in the respiratory chains of yeast and mammalian mitochondria. EMBO J 19: 1777–1783.

    Article  PubMed  Google Scholar 

  • Schägger H, de Coo R, Bauer MF, Hofmann S, Godinot C, Brandt U (2004) Significance of respirasomes for the assembly/stability of human respiratory chain complex I. J Biol Chem 279: 36349–36353.

    Article  PubMed  CAS  Google Scholar 

  • Schapira AH (2002) Primary and secondary defects of the mitochondrial respiratory chain. J Inherit Metab Dis 25: 207–214.

    Article  PubMed  CAS  Google Scholar 

  • Schapira AH, Cock HR (1999) Mitochondrial myopathies and encephalomyopathies. Eur J Clin Invest 29: 886–898.

    Article  PubMed  CAS  Google Scholar 

  • Schilling B, Aggeler R, Schulenberg B, et al (2005) Mass spectrometric identification of a novel phosphorylation site in subunit NDUFA10 of bovine mitochondrial complex I. FEBS Lett 579: 2485–2490.

    Article  PubMed  CAS  Google Scholar 

  • Schneider R, Massow M, Lisowsky T, Weiss H (1995) Different respiratory-defective phenotypes of Neurospora crassa and Saccharomyces cerevisiae after inactivation of the gene encoding the mitochondrial acyl carrier protein. Curr Genet 29: 10–17.

    Article  PubMed  CAS  Google Scholar 

  • Schneider R, Brors B, Massow M, Weiss H (1997) Mitochondrial fatty acid synthesis: a relic of endosymbiontic origin and a specialized means for respiration. FEBS Lett 407: 249–252.

    Article  PubMed  CAS  Google Scholar 

  • Schuelke M, Smeitink J, Mariman E, et al (1999) Mutant NDUFV1 subunit of mitochondrial complex I causes leukodystrophy and myoclonic epilepsy. Nat Genet 21: 260–261.

    Article  PubMed  CAS  Google Scholar 

  • Schulenberg B, Aggeler R, Beechem JM, Capaldi RA, Patton WF (2003) Analysis of steady-state protein phosphorylation in mitochondria using a novel fluorescent phosphosensor dye. J Biol Chem 278: 27251–27255.

    Article  PubMed  CAS  Google Scholar 

  • Schulte U (2001) Biogenesis of respiratory complex I. J Bioenerg Biomembr 33: 205–212.

    Article  PubMed  CAS  Google Scholar 

  • Schulte U, Fecke W, Krull C, et al (1994) In vivo dissection of the mitochondrial respiratory NADH: ubiquinone oxidoreductase (complex I). Biochim Biophys Acta 1187: 121–124.

    Article  PubMed  CAS  Google Scholar 

  • Schulte U, Haupt V, Abelmann A, et al (1999) A reductase/isomerase subunit of mitochondrial NADH:ubiquinone oxidoreductase (complex I) carries an NADPH and is involved in the biogenesis of the complex. J Mol Biol 292: 569–580.

    Article  PubMed  CAS  Google Scholar 

  • Sharpley MS, Shannon RJ, Draghi F, Hirst J (2006) Interactions between phospholipids and NADH:ubiquinone oxidoreductase (complex I) from bovine mitochondria. Biochemistry 45: 241–248.

    Article  PubMed  CAS  Google Scholar 

  • Smeitink J, van den Heuvel L, DiMauro S (2001a) The genetics and pathology of oxidative phosphorylation. Nat Rev Genet 2: 342–352.

    Article  CAS  Google Scholar 

  • Smeitink J, Sengers R, Trijbels F, van den Heuvel L (2001b) Human NADH:ubiquinone oxidoreductase. J Bioenerg Biomembr 33: 259–266.

    Article  CAS  Google Scholar 

  • Smeitink J, Zeviani M, Turnbull DM, Jacobs HT (2006) Mitochondrial medicine: a metabolic perspective on the pathology of oxidative phosphorylation disorders. Cell Metab 3: 9–13.

    Article  PubMed  CAS  Google Scholar 

  • Stroh A, Anderka O, Pfeiffer K, et al (2004) Assembly of respiratory complexes I, III, and IV into NADH oxidase supercomplex stabilises complex I in Paracoccus denitrificans. J Biol Chem 279: 5000–5007.

    Article  PubMed  CAS  Google Scholar 

  • Taylor RW, Morris AA, Hutchinson M, Turnbull DM (2002) Leigh disease associated with a novel mitochondrial DNA ND5 mutation. Eur J Hum Genet 10: 141–144.

    Article  PubMed  CAS  Google Scholar 

  • Triepels RH, van den Heuvel LP, Loeffen JL, et al (1999) Leigh syndrome associated with a mutation in the NDUFS7 (PSST) nuclear encoded subunit of complex I. Ann Neurol 45: 787–790.

    Article  PubMed  CAS  Google Scholar 

  • Tsuneoka M, Teye K, Arima N, et al (2005) A novel Myc-target gene, mimitin, that is involved in cell proliferation of esophageal squamous cell carcinoma. J Biol Chem 280: 19977–19985.

    Article  PubMed  CAS  Google Scholar 

  • Ugalde C, Triepels RH, Coenen MJ, et al (2003) Impaired complex I assembly in a Leigh syndrome patient with a novel missense mutation in the ND6 gene. Ann Neurol 54: 665–669.

    Article  PubMed  CAS  Google Scholar 

  • Ugalde C, Janssen RJ, van den Heuvel LP, Smeitink JA, Nijtmans LG (2004a) Differences in assembly or stability of complex I and other mitochondrial OXPHOS complexes in inherited complex I deficiency. Hum Mol Genet 13: 659–667.

    Article  CAS  Google Scholar 

  • Ugalde C, Vogel R, Huijbens R, Van Den Heuvel B, Smeitink J, Nijtmans L (2004b) Human mitochondrial complex I assembles through the combination of evolutionary conserved modules: a framework to interpret complex I deficiencies. Hum Mol Genet 13: 2461–2472.

    Article  CAS  Google Scholar 

  • Valentino ML, Barboni P, Ghelli A, et al (2004) The ND1 gene of complex I is a mutational hot spot for Leber's hereditary optic neuropathy. Ann Neurol 56: 631–641.

    Article  PubMed  CAS  Google Scholar 

  • Van den Heuvel L, Ruitenbeek W, Smeets R, et al (1998) Demonstration of a new pathogenic mutation in human complex I deficiency: a 5-bp duplication in the nuclear gene encoding the 18-kD (AQDQ) subunit. Am J Hum Genet 62: 262–268.

    Article  PubMed  Google Scholar 

  • Videira A (1998) Complex I from the fungus Neurospora crassa. Biochim Biophys Acta 1364: 89–100.

    Article  PubMed  CAS  Google Scholar 

  • Videira A, Duarte M (2002) From NADH to ubiquinone in Neurospora mitochondria. Biochim Biophys Acta 1555: 187–191.

    Article  PubMed  CAS  Google Scholar 

  • Vogel R, Nijtmans L, Ugalde C, van den Heuvel L, Smeitink J (2004) Complex I assembly: a puzzling problem. Curr Opin Neurol 17: 179–186.

    Article  PubMed  CAS  Google Scholar 

  • Vogel RO, Janssen RJ, Ugalde C, et al (2005) Human mitochondrial complex I assembly is mediated by NDUFAF1. FEBS J 272: 5317–5326.

    Article  PubMed  CAS  Google Scholar 

  • Walker JE, Arizmendi JM, Dupuis A, et al (1992) Sequences of 20 subunits of NADH: ubiquinone oxidoreductase from bovine heart mitochondria. Application of a novel strategy for sequencing proteins using the polymerase chain reaction. J Mol Biol 226: 1051–1072.

    Article  PubMed  CAS  Google Scholar 

  • Walker JE, Skehel JM, Buchanan SK (1995) Structural analysis of NADH: ubiquinone oxidoreductase from bovine heart mitochondria. Methods Enzymol 260: 14–34.

    Article  PubMed  CAS  Google Scholar 

  • Washizuka S, Kakiuchi C, Mori K, et al (2003) Association of mitochondrial complex I subunit gene NDUFV2 at 18p11 with bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 120: 72–78.

    Article  PubMed  Google Scholar 

  • Washizuka S, Iwamoto K, Kazuno AA, et al (2004) Association of mitochondrial complex I subunit gene NDUFV2 at 18p11 with bipolar disorder in Japanese and the National Institute of Mental Health pedigrees. Biol Psychiatry 56: 483–489.

    Article  PubMed  CAS  Google Scholar 

  • Yadava N, Potluri P, Smith EN, Bisevac A, Scheffler IE (2002) Species-specific and mutant MWFE proteins. Their effect on the assembly of a functional mammalian mitochondrial complex I. J Biol Chem 277: 21221–21230.

    Article  PubMed  CAS  Google Scholar 

  • Yadava N, Houchens T, Potluri P, Scheffler IE (2004) Development and characterization of a conditional mitochondrial complex I assembly system. J Biol Chem 279: 12406–12413.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan A. M. Smeitink.

Additional information

Communicating editor: John Christodoulou

Competing interests: None declared

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janssen, R.J.R.J., Nijtmans, L.G., Heuvel, L.P.v.d. et al. Mitochondrial complex I: Structure, function and pathology. J Inherit Metab Dis 29, 499–515 (2006). https://doi.org/10.1007/s10545-006-0362-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-006-0362-4

Keywords

Navigation