Skip to main content
Log in

Fabrication of a polycarbonate microdevice and boronic acid-mediated surface modification for on-chip sample purification and amplification of foodborne pathogens

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

In this study, we integrated sample purification and genetic amplification in a seamless polycarbonate microdevice to facilitate foodborne pathogen detection. The sample purification process was realized based on the increased affinity of the boronic acid-modified surface toward the cis-diol group present on the bacterial outer membrane. The modification procedure was conducted at room temperature using disposable syringe. The visible color and fluorescence signals of alizarin red sodium were used to confirm the success of the surface modification process. Escherichia coli O157:H7 containing green fluorescence protein (GFP) and Staphylococcus aureus were chosen as the microbial models to demonstrate the nonspecific immobilization using the microdevice. Bacterial solutions of various concentrations were injected into the microdevice at three flow rates to optimize the operation conditions. This microdevice successfully amplified the 384-bp fragment of the eaeA gene of the captured E. coli O157:H7 within 1 h. Its detection limit for E. coli O157:H7 was determined to be 1 × 103 colony-forming units per milliliter (CFU mL−1). The proposed microdevice serves as a monolithic platform for facile and on-site identification of major foodborne pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • A. Adamczyk-Woźniak, R.M. Fratila, I.D. Madura, A. Pawełko, A. Sporzyński, M. Tumanowicz, A.H. Velders, J. Żyła, Tetrahedron Lett. 52, 6639–6642 (2011)

    Article  Google Scholar 

  • C.D. Ahrberg, A. Manz, B.G. Chung, Lab Chip 16, 3866–3884 (2016)

    Article  Google Scholar 

  • T. Artham, M. Doble, Macromol. Biosci. 8, 14–24 (2008)

    Article  Google Scholar 

  • S.A. Barghouthi, Indian J. Microbiol. 51, 430–444 (2011)

    Article  Google Scholar 

  • R.F. Borch, M.D. Bernstein, H.D. Durst, J. Am. Chem. Soc. 93, 2897–2904 (1971)

    Article  Google Scholar 

  • J.M. Butler, Advanced topics in forensic DNA typing: methodology chapter 4, 69–97 (2012)

  • N. Debreczeni, A. Fodor, Z. Hell, Catal. Lett. 144, 1547–1551 (2014)

    Article  Google Scholar 

  • L. Garibyan, N. Avashia, J. Invest. Dermatol. 133, 1–4 (2013)

    Article  Google Scholar 

  • T.R. Garrett, M. Bhakoo, Z. Zhang, Prog. Nat. Sci. 18, 1049–1056 (2008)

    Article  Google Scholar 

  • L.E. Govaert, T.A. Tervoort, J. Polym. Sci. B Polym. Phys. 42, 2041–2049 (2004)

    Article  Google Scholar 

  • N.S.K. Gunda, M. Singh, L. Norman, K. Kaur, S.K. Mitra, Appl. Surf. Sci. 305, 522–530 (2014)

    Article  Google Scholar 

  • M.L. Ha, Y. Zhang, N.Y. Lee, Biotechnol. Bioeng. 113, 2614–2623 (2016)

    Article  Google Scholar 

  • R. Jackeray, C.K.V.Z. Abid, G. Singh, S. Jain, S. Chattopadhyaya, S. Sapra, T.G. Shrivastav, H. Singh, Talanta 84, 952–962 (2011)

    Article  Google Scholar 

  • T. Kajisa, T. Sakata, Jpn. J. Appl. Phys. 56, 1–5 (2015)

    Google Scholar 

  • J. Kaur, C. Jiang, G. Liu, Biosens. Bioelectron. 1123, 85–100 (2019)

    Article  Google Scholar 

  • K.V. Kong, Z. Lam, W.K.O. Lau, W.K. Leong, M. Olivo, J. Am. Chem. Soc. 135, 18028–18031 (2013)

    Article  Google Scholar 

  • M. Krishnan, V.M. Ugaz, M.A. Burns, Science 298, 793 (2002)

    Article  Google Scholar 

  • Y. Li, C. Zhang, D. Xing, Microfluid. Nanofluid. 10, 367–380 (2011)

    Article  Google Scholar 

  • Y.C. Liu, C.J. Chen, Mass Spectrometry 6, S0063 (2017)

    Article  Google Scholar 

  • J. Lyklema, W. Norde, M.C.M. van Loosdrecht, A.J.B. Zehnder, Colloids Surf. 39, 175–187 (1989)

    Article  Google Scholar 

  • W.M.J. Ma, M.M.P. Morais, F. D’Hooge, J.M.H. van den Elsen, J.P.L. Cox, T.D. James, J.S. Fossey, Chem. Commun. 13, 532–534 (2009)

    Article  Google Scholar 

  • T.P.O. Nguyen, B.M. Tran, N.Y. Lee, Lab Chip 16, 3251–3259 (2016)

    Article  Google Scholar 

  • D. Ogończyk, J. Węgrzyn, P. Jankowski, B. Dąbrowski, P. Garstecki, Lab Chip 10, 1324–1327 (2010)

    Article  Google Scholar 

  • S.Q.F. Parizzi, N.J. de Andrade, C.A.d.S. Silva, N.d.F.F. Soares, E.A.M. da Silva, Braz. Arch. Biol. Technol. 47, 77–83 (2004)

    Article  Google Scholar 

  • B. Pearson, P. Wang, A. Mills, S. Pang, L. McLandsboroug, L. He, Anal. Methods 9, 4732–4739 (2017)

    Article  Google Scholar 

  • X.H. Pham, S. Shim, T.H. Kim, E. Hahm, H.M. Kim, W.Y. Rho, D.H. Jeong, Y.S. Lee, B.H. Jun, BioChip J. 11, 46–56 (2017)

    Article  Google Scholar 

  • Q.N. Pham, K.T.L. Trinh, S.W. Jung, N.Y. Lee, Biotechnol. Bioeng. 115, 2194–2204 (2018)

    Article  Google Scholar 

  • B. Priyanka, R.K. Patil, S. Dwarakanath, Indian J. Med. Res. 144, 327–338 (2016)

    Article  Google Scholar 

  • D.S. Raghuvanshi, A.K. Gupta, K.N. Singh, Org. Lett. 14, 4326–4329 (2012)

    Article  Google Scholar 

  • C. Schrader, A. Schielke, L. Ellerbroek, R. Johne, L. App. Microbio. 113, 1014–1026 (2012)

    Article  Google Scholar 

  • B. Shu, C. Zhang, D. Xing, Lab Chip 15, 2597–2605 (2015)

    Article  Google Scholar 

  • B. Shu, C. Zhang, D. Xing, Biosens. Bioelectron. 97, 360–368 (2017)

    Article  Google Scholar 

  • C. Sousa, P. Teixeira, S. Bordeira, J. Fonseca, R. Oliveira, J. Adhes. Sci. Technol. 22, 675–686 (2008)

    Google Scholar 

  • G. Springsteen, B. Wang, Tetrahedron 58, 5291–5300 (2002)

    Article  Google Scholar 

  • K.T.L. Trinh, H. Zhang, D.J. Kang, S.H. Kahng, B.D. Tall, N.Y. Lee, Int. Neurourol J. 20, 38–48 (2016)

    Article  Google Scholar 

  • K.T.L. Trinh, Y. Zhang, N.Y. Lee, Anal. Chim. Acta 1040, 63–73 (2018)

    Article  Google Scholar 

  • M. Varea, A. Clavel, O. Doiz, F.J. Castillo, M.C. Rubio, R. Gómez-Lus, Int. J. Parasitol. 28, 1881–1883 (1998)

    Article  Google Scholar 

  • J. Wang, J. Gao, D. Liu, D. Han, Z. Wang, Nanoscale 4, 451–454 (2012)

    Article  Google Scholar 

  • S. Wang, G.E. LeCroy, F. Yang, X. Dong, Y.P. Sun, L. Yang, RSC Adv. 5, 91246–91253 (2015a)

    Article  Google Scholar 

  • H. Wang, Y. Zhou, X. Jiang, B. Sun, Y. Zhu, H. Wang, Y. Su, Y. He, Angew. Chem. Int. Ed. 54, 5132–5136 (2015b)

    Article  Google Scholar 

  • G.F. Whyte, R. Vilar, R. Woscholski, Chem. Biol. 6, 161–174 (2013)

    Article  Google Scholar 

  • W. Zhai, X. Sun, T.D. James, J.S. Fossey, Chem. Asian J. 10, 1836–1848 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. NRF-2017R1A2B4008179).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nae Yoon Lee.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1.66 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

La, H.C., Lee, N.Y. Fabrication of a polycarbonate microdevice and boronic acid-mediated surface modification for on-chip sample purification and amplification of foodborne pathogens. Biomed Microdevices 21, 72 (2019). https://doi.org/10.1007/s10544-019-0420-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-019-0420-y

Keywords

Navigation