Skip to main content
Log in

Valves for autonomous capillary systems

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Autonomous capillary systems (CSs) are microfluidic systems inside which liquids move owing to capillary forces. CSs can in principle bring the high-performances of microfluidic-based analytical devices to near patient and environmental testing applications. In this paper, we show how wettable capillary valves can enhance CSs with novel functionalities, such as delaying and stopping liquids in microchannels. The valves employ an abruptly changing geometry of the flow path to delay a moving liquid filling front in a wettable microchannel. We show how to combine delay valves with capillary pumps, prevent shortcuts of liquid along the corners of microfluidic channels, stop liquids filling microchannels from a few seconds to over 30 min, trigger valves using two liquid fronts merging, and time a liquid using parallel microfluidic paths converging to a trigger valve. All together, these concepts should add functionality to passive microfluidic systems without departing from their initial simplicity of use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andersson H, van der Wijngaart W, Griss P, Niklaus F, Stemme G (2001) Hydrophobic valves of plasma deposited octafluorocyclobutane in drie channels. Sens Actuators B 75:136–141

    Article  Google Scholar 

  • Beebe DJ, Moore JS, Bauer JM, Yu Q, Liu RH, Devadoss C, Jo B (2000) Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404(6778):588–590

    Article  Google Scholar 

  • Beebe DJ, Mensing GA, Walker GM (2002) Physics and applications of microfluidics in biology. Annu Rev Biomed Eng 4:261–286

    Article  Google Scholar 

  • Bresslauer DN, Lee PJ, Lee LP (2006) Microfluidics-based systems biology. Mol BioSyst 2:97–112

    Article  Google Scholar 

  • Cesaro-Tadic S, Dernick G, Juncker D, Buurman G, Kropshofer H, Michel B, Fattinger C, Delamarche E (2004) High-sensitivity miniaturized immunoassays for tumor necrosis factor alpha using microfluidic systems. Lab Chip 4(6):563–569

    Article  Google Scholar 

  • Chen J, Huang P, Lin M (2007) Analysis and experiment of capillary valves for microfluidics on a rotating disk. Microfluid Nanofluid (in press). doi:10.1007/s10404-007-0196-x

  • Cheng JY, Hsiung LC (2004) Electrowetting (ew)-based valve combined with hydrophilic teflon microfluidic guidance in controlling continuous fluid flow. Biomed Microdev 6(4):341–347

    Article  Google Scholar 

  • Cheow LF, Yobas L, Kwong DL (2007) Digital microfluidics: droplet based logic gates. Appl Phys Lett 90(5):054107

    Article  Google Scholar 

  • Cho H, Kim HY, Kang JY, Kim TS (2007) How the capillary burst microvalve works. J Colloid Interface Sci 306(2):379–385

    Article  Google Scholar 

  • Delamarche E, Juncker D, Schmid H (2005) Microfluidics for processing surfaces and miniaturizing biological assays. Adv Mater 17:2911–2933

    Article  Google Scholar 

  • DeMello AJ (2006) Control and detection of chemical reactions in microfluidic systems. Nature 442(7101):394–402

    Article  Google Scholar 

  • Dittrich PS, Tachikawa K, Manz A (2006) Micro total analysis systems. Latest advancements and trends. Anal Chem 78(12):3887–3907

    Article  Google Scholar 

  • Gliere A, Delattre C (2006) Modeling and fabrication of capillary stop valves for planar microfluidic systems. Sens Actuators A Phys 130–131:601–608

    Article  Google Scholar 

  • Juncker D, Schmid H, Drechsler U, Wolf H, Wolf M, Michel B, de Rooij N, Delamarche E (2002) Autonomous microfluidic capillary system. Anal Chem 74(24):6139–6144

    Article  Google Scholar 

  • Khandurina J, Guttman A (2002) Bioanalysis in microfluidic devices. J Chromatogr A 943(2):159–183

    Article  Google Scholar 

  • Krishnan A, Wilson A, Sturgeon J, Siedlecki CA, Vogler EA (2002) Liquid-vapor interfacial tension of blood plasma, serum and purified protein constituents thereof. Biomaterials 26(17):3445–3453

    Article  Google Scholar 

  • Leu TS, Chang PY (2004) Pressure barrier of capillary stop valves in micro sample separators. Sens Actuators A Phys 115:508–515

    Article  Google Scholar 

  • Lu CM, Xie YB, Yang Y, Cheng MMC, Koh CG, Bai YL, Lee LJ (2007) New valve and bonding designs for microfluidic biochips containing proteins. Anal Chem 79(3):994–1001

    Article  Google Scholar 

  • Man FP, Mastrangelo CH, Burns MA, Burke DT (1998) Microfabricated capillarity-driven stop valve and sample injector. In: Proceedings of the eleventh annual international workshop on micro electro mechanical systems

  • Melin J, Roxhed N, Gimenez G, Griss P, van der Wijngaart W, Stemme G (2004) A liquid-triggered liquid microvalve for on-chip flow control. Sens Actuators B Chem 100(3):463–468

    Article  Google Scholar 

  • Oh KW, Ahn CH (2006) A review of microvalves. J Micromech Microeng 16:R13–R39

    Article  Google Scholar 

  • Prakash M, Gershenfeld N (2007) Microfluidic bubble logic. Science 315(5813):832–835

    Article  Google Scholar 

  • Siljegovic V, Milicevic N, Griss P (2005) Passive, programmable flow control in capillary force driven microfluidic networks. TRANSDUCERS ’05. In: The 13th international conference on solid-state sensors, actuators and microsystems, vol 2. Digest of Technical Papers (IEEE Cat. No. 05TH8791), pp 1565–1568

  • Stemme E, Stemme G (1993) A valveless/nozzle-based fluid pump. Sens Actuators A Phys 39:159–167

    Article  Google Scholar 

  • Woias P (2005) Micropumps—past, progress and future prospects. Sens Actuators B 105(1):28–38

    Article  Google Scholar 

  • Wolf M, Juncker D, Michel B, Hunziker P, Delamarche E (2004) Simultaneous detection of c-reactive protein and other cardiac markers in human plasma using micromosaic immunoassays and self-regulating microfluidic networks. Biosens Bioelectron 19(10):1193–1202

    Article  Google Scholar 

  • Yager P, Edwards T, Fu E, Helton K, Nelson K, Tam MR, Weigl BH (2006) Microfluidic diagnostic technologies for global public health. Nature 442(7101):412–418

    Article  Google Scholar 

  • Zimmermann M, Schmid H, Hunziker P, Delamarche E (2007) Capillary pumps for autonomous capillary systems. Lab Chip 7(1):119–125

    Article  Google Scholar 

Download references

Acknowledgments

We thank U. Drechsler and R. Stutz for their help with the fabrication of the CSs, H. Schmid for his help with initial experiments, J. Ziegler and D. Solis for discussions and technical help, and W. Riess and P. Seidler for their continuous support. M. Z. acknowledges support from H.-J. Güntherodt and financial support from the Swiss Commission for Technology and Innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Delamarche.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (1982 kb)

Supplementary material (405 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zimmermann, M., Hunziker, P. & Delamarche, E. Valves for autonomous capillary systems. Microfluid Nanofluid 5, 395–402 (2008). https://doi.org/10.1007/s10404-007-0256-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-007-0256-2

Keywords

Navigation